
PScript Manual

Acknowledgments:

Dr.-Ing . Matthias Westhäuser, Dipl.-Inf. Nicolas Luck, B.Sc. Jan-Hendrik Menke,
Dr.-Ing. Christian Remmersmann

Manual Creation Date:

August 15, 2013; PHOTOSS 5.92

1

Contents

1 Copyright Information 4

2 Acknowledgments 4

3 What is PScript? 5

4 Version Changes 7
4.1 From PHOTOSS 5.0 (Rev. 3624) to 5.10 (Rev. 3929) . 7
4.2 From PHOTOSS 5.10 (Rev. 3929) to 5.10.3 (Rev. 5019257) 7
4.3 From PHOTOSS 5.10.3 (Rev. 5019257) to 5.90.2 (Rev. fd68ed5) 7
4.4 From PHOTOSS 5.90.2 (Rev. fd68ed5) to 5.91 . 9
4.5 From PHOTOSS 5.91 to 5.92 . 9

5 Basic Functionality of PScript 10

6 PScript Conventions 12
6.1 General Conventions . 12
6.2 Conventions concerning PScript Objects . 13

7 PScript Demo Walkthrough 15

8 Access to Simulations, Components, Parameters and Results (Quickstart Guide) 16

9 PScript and MATLAB R© 19

10 PScript Console Main Window 20

11 PScript Console Menu Functionality 21

12 PScript Settings Dialog 22
12.1 Console Settings . 22
12.2 Editor Settings . 23
12.3 Log File Settings . 24
12.4 History Settings . 25
12.5 MATLAB R© Settings . 25
12.6 Include Settings . 26
12.7 Auto Include Settings . 26

13 Using PScript in Command Line Mode / Using PScript with Condor R© 28

14 PScript Syntax Highlighting and Code Assistant 29

15 PScript Code Samples 30

16 PScript Function Reference 31
16.1 PScript Options / Settings . 31
16.2 General Functions . 32
16.3 Generating Random Numbers in PScript . 34
16.4 Functions concerning the application class: . 36
16.5 Functions concerning the simulation class: . 40
16.6 Functions concerning the component class: . 43
16.7 Functions concerning the simulation parameter class: . 48
16.8 Functions concerning the result class: . 54
16.9 Functions concerning the global variables: . 55
16.10Functions concerning linking and unlinking of components 56
16.11PScript MATLAB R© specific functions . 58

17 Basic JavaScript Mathematical Function Reference 60

2

18 External References 61

Index 62

3

1 Copyright Information

This manual was written by Dipl.-Phys. Matthias Westhäuser, Lehrstuhl für Hochfrequenztechnik, Tech-
nische Universität Dortmund. The manual was designed a basic manual including a function reference
for the PHOTOSS PScript language and functionality.

This manual may be copied and printed for scientific use and non-commercial use as long as no changes to
the document have been made. Registered PHOTOSS clients may copy and use the document for internal
purposes - this does not include the distribution of this document to third parties, etc. Commercial use
of the document in the form of selling, reselling or republication in any form is prohibited without the
consent of the author.

The author does by no means guarantee the accuracy, actuality, or correctness of the information in this
document. The author is also not responsible for any damage which might arise due to the use of the
information in this manual.

Please keep in mind that MATLAB R© is a product of “The Math WorksTM”. For reasons of simplicity,
MATLAB R© will also be referred to as “Matlab” in this document when considering code examples. For
more information please visit the external homepage of the vendor:
http://www.mathworks.com .

Condor R© is a product of the Condor Research Project at the University of Wisconsin-Madison (UW-
Madison). For more information please visit the external homepage of the vendor:
http://www.cs.wisc.edu/condor.

2 Acknowledgments

The author would like to thank Dipl.-Inf. Nicolas Luck, B.Sc. Jan-Hendrik Menke and Dr.-Ing. Christian
Remmersmann for general comments and assistance with quality assurance concerning this document.
Please open the PScript console and look at the menu entry Help ⇒ About PScript to get an overview
of all the people who took part in developing PScript.

4

http://www.mathworks.com/
http://www.cs.wisc.edu/condor

3 What is PScript?

PScript is an abbreviation for PHOTOSS Script. It is a script engine based on the ECMA-Standard.
PScript can be used to embed a PHOTOSS simulation in an algorithmic context. Thus, it enables the
user to control the PHOTOSS environment, using predefined, automated scripts which reside “outside” of
the PHOTOSS simulation. PScript can help to drastically reduce the amount of “manual” work needed
to create flexible, straightforward, and yet complex parameter variations.

New Possibilities arise by using PScript - a Short Overview:

• Generate automated scripts that require little or no user interaction to run.

• Use PScript to easily create dynamic parameter variations which are much more flexible than
standard PHOTOSS parameter variations.

• Embed your simulations into an algorithmic context (for-loops, if-statements, etc.): Change com-
ponent parameters depending on results of earlier simulation runs and parameter combinations, or
extend and abort parameter combinations once certain conditions are met.

• Directly access all PHOTOSS results (without the use of file-writing mechanisms) and utilize these
results to make decisions in your algorithmic context and parameter variation(s) or start a detailed
analysis of your results by transferring them to a MATLAB R© workspace environment.

• Use the algorithmic context to “propagate” knowledge of simulation parameters and results from one
simulation run to another. This enables the use of powerful statistical methods such as importance
sampling or Multicanonical Monte Carlo methods (MMC).

The remainder of this document is organized as follows:

• Section 4 - Version Changes on page 7 is a list of all new features which have been added since
the first release version of PScript. Browsing through this page will immediately make you familiar
will all new functions and features.

• Section 5 - Basic Functionality of PScript on page 10 gives a short overview of what the PScript
engine is capable of.

• Section 6 - PScript Conventions on page 12 will familiarize you with all important conventions
and writing styles when making your own PScripts.

• Section 7 - PScript Demo Walkthrough on page 15 will show you how easily you can make
your own PScript s using a "Hello World"-example.

• Section 8 - Access to Simulations, Components, Parameters and Results (Quickstart
Guide) on page 16 will provide you with all the skills necessary to create a more complex PScript
and you will learn how to handle simulations, components, parameters and results.

• Section 9 - PScript and MATLAB R© on page 19 will illustrate the powerful interaction between
PScript, PHOTOSS and MATLAB R©.

• Section 10 - PScript Console Main Window on page 20 will familiarize you with the PScript
main window and its functionality.

• Section 11 - PScript Console Menu Functionality on page 21 gives a detailed overview of the
PScript menu.

• Section 12 - PScript Settings Dialog on page 22 describes in detail all available PScript Settings.

• Section 14 - PScript Syntax Highlighting and Code Assistant on page 29 will introduce you
to the comfortable Code Assistant and PScript Syntax Highlighting abilities.

• Section 15 - PScript Code Samples on page 30 includes an overview of all available PScript
Code Samples which are included in your PHOTOSS installation.

• Section 16 - PScript Function Reference on page 31 includes detailed descriptions for all
functions of PScript.

5

• Section 17 - Basic JavaScript Mathematical Function Reference on page 60 is a short
introduction to the basic mathematical functions which are automatically included in PScript and
JavaScript.

• Section 18 - External References on page 61 lists a few hyperlinks to Internet sources for further
information.

6

4 Version Changes

In this section you will find all important changes which were made between new versions of PHOTOSS
and PScript. If you are unsure which version of PHOTOSS and PScript you use, please open PScript
and look at the menu entry Help ⇒ About PScript. There you will find the revision number of both
PHOTOSS and PScript as well as the build date and several other information.

4.1 From PHOTOSS 5.0 (Rev. 3624) to 5.10 (Rev. 3929)

No changes at PScript.

4.2 From PHOTOSS 5.10 (Rev. 3929) to 5.10.3 (Rev. 5019257)

No changes at PScript.

4.3 From PHOTOSS 5.10.3 (Rev. 5019257) to 5.90.2 (Rev. fd68ed5)

This revision contains several major additions to the PScript functionality, including the creation, linking
and deletion of components as well as the ability to use the new concept of simulation parameters.

• Semantic change: When invoking s.run() to execute a simulation, parameter variations will no
longer be run. The simulation will only be run once, using the current value for each simulation
parameter (and its placeholders). This is due to the fact that a complete parameter variation script
can be automatically calculated and run in the PHOTOSS GUI (please refer to the PHOTOSS
manual for more details). If you want to run a parameter variation directly from PScript, you may
use the new function getParameterVariationScript() described on page 52.

• Semantic change: For addressing the simulation parameter “polPlanes”, the valid values were
changed from “false” or “true” to the number of simulated polarization planes. The new valid values
may be “1” (one polarization axis, no polarization effects) or “2” (two polarization axes, polarization
effects are included). Please adjust your scripts accordingly! A warning will automatically be
generated each time you try to change the parameter “polPlanes” to indicate the semantic changes.

• Semantic change: PScript now has a separate random number generator which is no longer
connected to a PHOTOSS simulation. It is thus possible to generate random numbers without
having to open PHOTOSS simulations first. Please also refer to section 16.3 on page 34 for more
details on random number generation. Changing the random generator settings for a simulation is,
of course, also possible by adjusting the corresponding simulation parameters.

• New feature: PScript is now using an improved algorithm for syntax highlighting.

• New feature: PHOTOSS has undergone major changes concerning its simulation parameter and
“global parameter” structures (please refer to the PHOTOSS manual for a more detailed expla-
nation). Most importantly, the old concept of “global variables” has been replaced by a global
“simulation parameter” concept which concerns both the built-in simulation parameters (e.g. ref-
erence bitrate, etc.) and custom simulation parameters (which were called “global parameters”
before). Both custom and built-in simulation parameters may be used as place-holders for (e.g.)
component parameters and may be used in a parameter variation. From a PScript point of view,
the syntax for the simulation parameter handling has been extended and you can now distinguish
between built-in and custom simulation parameters. Additionally, creating or deleting (cus-
tom) simulation parameters is now possible. Please refer to section 16.7 on page 48 for
further details and an overview of all new functions!

• New feature: Due to the major changes in the simulation parameter class, a new feature has become
available. You can now also access the so-called “derived” simulation parameters by using the new
functions listDerivedSimulationParameters, getDerivedSimulationParameterValue and
getDerivedSimulationParameterUnit described in section 16.7 on page 48. The derived simulation pa-
rameters are visible in the simulation parameter dialog and are automatically calculated from the
standard set of built-in simulation parameters. Thus, these parameters are read-only; however,
they can be used as placeholders in formulas, e.g. for component parameters.

7

• Continued support: Due to the changes to the simulation parameter concept explained above, the
old concept of “global variables” has been abandoned. If, however, you still have legacy code using
functions which operate on “global variables” this code still works and automatically calls the new
simulation parameter counterparts. A warning will be issued to indicate this. For more details on
which functions are now obsolete, please refer to section 16.9 on page 55.

• New feature: PScript is able to invoke command line calls. See the function execute() on page 32
for further details.

• New feature: New simulations can now be created using PScript by invoking the newSimulation()

command described on page 38.

• New feature: You can check, whether any component is of a certain type (e.g. a “Pulse Generator”
or an “Analytical Filter”) by using the isComponentOfType() function described on page 46.

• New feature: You can access the type of any PHOTOSS component using the getComponentType()

function described on page 44.

• New feature: You can now change the name of any component using the setName() function described
on page 47.

• New feature: It is now possible to create components using the createComponent() functionality listed
on page 43. Components can also be deleted by using the PScript function deleteComponent() and
deleteAllComponents() which are described in detail on page 41. It is also possible to create a new
component and automatically link it to a component which already exists using the PScript function
createAndConnectComponent() (see page 44). The coordinates of a component can be accessed using
the getGridCoordinates() function shown on page 44.

• New feature: A lot of new functions have been added to enable you to control component linking.
Please refer to the new PScript code sample “Component Linking” to get a detailed example and
description of all new features concerning component linking. The new functions are:
You can now link components manually using the PScript function linkComponents(). It is de-
scribed in detail on page 56. You can also remove the link on specified components by using the
unlinkComponents() function of PScript which is described on page 57. Component ports are ad-
dressed zero-based (e.g. starting from 0 for the first port of a component). You can check whether
a given In- or Outport of a component is linked by invoking the isInPortLinked(), isOutPortLinked()

and isLinked() functionality which are described on page 56. You can check whether the component
you specified is linked to another component by calling the isLinkedTo() function (see page 57). It
is also possible to receive the port number(s) through which a given set of components is connected
by calling the getLinkPorts() function described on page 57. The functions getInPortLinks (page 56)
and getOutPortLinks (page 56) work the other way round: They return the component(s) which are
connect to the given In- or Out-Ports of a given component.

• Objects and variables in the PScript workspace can now be deleted (“cleared”) using the function
clear(). You can find more details about the function on page 40.

• New feature: PHOTOSS compatible GPU devices and PHOTOSS GPU options can now be con-
trolled in PScript by using the function setPHOTOSSOptionValue() described on 39.

• New feature: It is now possible to access components and component results by using the “asterisk-
method”. For example you can access all components which possess a name that starts with the
phrase “Analytical” by using myComponentVector = mySimObject.getComponents("Analytical*"). If, for ex-
ample, you want to access all result values which end with the phrase “penalty”, you can use
myResultsValues = s.myComponent.getResultValues("*penalty"). It is also possible to access all compo-
nents (or results) which contain a given phrase. E.g. myComponentVector = s.getComponents("*filter*")

would return all components which contain the phrase “filter” in their name.

• New feature: PScript files can now be dropped on the PScript code area using the “Drag-And-
Drop” method. Just drag you PScript file (from e.g. the Explorer) to the PScript code area and
drop it there.

• New feature: The PScript Manual is now accessible through the PScript Console window by selecting
Help ⇒ PScript Manual.

8

• New default value: The default value for the MATLAB R© timeout has now been set to 10.000
seconds instead of 600.

• New default value: The default value for the Syntax Highlighting in PScript has now been set to
true.

• Bugfixes: Issues with the PScript Syntax Highlighting (SHL) have been solved. Full undo function-
ality has been implemented; latency for displaying and editing larger PScript files has been greatly
reduced.

4.4 From PHOTOSS 5.90.2 (Rev. fd68ed5) to 5.91

• New feature: You can get an overview of all the currently existing variables and objects in the
PScript workspace by calling the who() functionality which is shown in more detail on page 33.

• New feature: Directories can now be created by using the createDirectory() function described on
page 37.

• New feature: Directories can now be deleted by using the deleteDirectory() function described on
page 37.

• New feature: The existence of a file can be checked by using the doesFileExist() function described
on page 37.

• New feature: All files of a specified folder can be copied to a destination folder by using the
copyFromTo() function described on page 37.

• New feature: appendStringToFile() function described on page 36.

• New feature: readStringArrayFromFile() function described on page 38.

• New feature: writeStringArrayToFile() function described on page 39.

• Bugfix: Calling the clearWorkspace() function no longer deletes the execute() functionality.

4.5 From PHOTOSS 5.91 to 5.92

• New feature: You can get a timestamp string in PScript by calling the timestamp() function described
on page 39.

• New feature: You can save and load your current PScript workspace data similar to MATLAB R©
by using the functions saveVariables() (page 38) and loadVariables() (page 38).

• Misc: The addressable grid size of a network in PScript is now 1024x1024 instead of 128x128.

9

5 Basic Functionality of PScript

Please also refer to the section 15 - PScript Code Samples on page 30 and 16 - PScript Function
Reference on page 31 for more details and explanations.

• PScript can be used to create, open, save and close any PHOTOSS simulation file.

• PScript can start, clear, end and abort a PHOTOSS simulation.

• You can access and modify any simulation parameter in an opened simulation file using PScript.

• You can create and delete custom simulation parameters using PScript.

• You can access and modify any component parameter in an opened simulation file using PScript.

• You can globally change parameters for all components of the same type in an opened PHOTOSS
simulation file (for example you can set all analytical filter types to the type “Gauss”). You can
also add conditions to such a statement (e.g. you can set all analytical filter types which work in
the mode “optical” to the type “Gauss”).

• After a simulation has finished, you can access any result by using PScript. The result does not
have to be saved to a file or specifically activated in order to do this.

• You can access parameters and results of components which reside inside a network structure,
sub-network structure, or an iterator component.

• Any formula used to calculate a simulation parameter / component parameter can be accessed and
modified.

• You can access the PHOTOSS random generator and place a custom seed using PScript. You can
also switch between the modes “deterministic” and “statistical”.

• You can access the MATLAB R© workspace at any time (except during a simulation run). PScript
can copy double variables either from or to the MATLAB R© workspace. You can also “send” any
valid MATLAB R© command to the MATLAB R© workspace which will automatically be executed
(creation of variables, execution of a MATLAB R© script, etc.). Please refer to the chapter 9 -
PScript and MATLAB R© on page 19 for further details.

• PScripts can be divided into “subscripts” by using the include-command.

• You can create and integrate your own function library for PScript.

• You can automatically execute any number of initialization scripts before starting your main PScript
using the PScript “Auto Include” functionality.

• The active PScript directory can be accessed and changed to any valid path. Relative paths can be
defined.

• You can use all data types and data structures currently supported by Qt Script / JavaScript -
double, int, arrays, vectors, etc. Please see the reference [JavaScript] on page 61 for details.

• You can use all typical algorithmic constructs and operators supported by Qt Script - this of course
includes loops (for / while), if-statements, etc. Please see the reference [JavaScript] on page 61 for
details.

• You can use the (basic) mathematic functions included in Qt Script. This includes the use of (e.g.)
sin/cos-functions, exp/log, etc. Please see section 17 on page 60 and the reference [MATH] on page
61 for details.

• You can use PScript to execute command line interface programs.

• PScript offers full access to all PHOTOSS console logs; you can predefine which logs will be shown
on the PScript output console (errors, warnings, general output).

• You can print any valid string to both (or either) the PHOTOSS and the PScript console.

10

• PScript offers a script editor with basic syntax highlighting and automatic code completion abilities.
The editor allows you to create your own PScripts and to view / modify the predefined example
scripts. Of course, you can alternatively use any custom text file editor to create / modify your
own scripts; any valid script can be loaded and run from the PScript main window.

• You are able to set all PHOTOSS options using PScript, including GPU options.

11

6 PScript Conventions

6.1 General Conventions

• All PScript program code is case sensitive.

• A PScript program code line does not have to be terminated with a semicolon.

• Comments can be inserted in code lines by beginning the line with two slashes: //.

• Longer comments can be inserted by using /* Long Comment */

• When specifying a path or directory string, you can either use singles slashes or two backslashes:
application.setCurrentDirectory("C:/Test/") or application.setCurrentDirectory("C:\\Test\\SubDir")

• For more syntax conventions please also refer to the PScript Code Samples in section 15, page 30.

• PScript function calls containing more than one word are written in camel case notation, e.g.:
.getParameterValue().

• The only exceptions from this rule are the phrases “PScript” and “PHOTOSS” which are always
written with a capitalized “PS” or completely capitalized, respectively. Any other phrase which is
also completely capitalized will also not be written in camel case notation, e.g.:
simObject.SMF.getParameterValue().

12

6.2 Conventions concerning PScript Objects

An overview of the objects of PScript is shown in figure 1. Objects which are depicted in black are always
available in PScript. Objects with a different color must be created or opened first.

Figure 1. Overview of PScript objects. Objects shown in black are always available in PScript.

• Most PScript objects can be overwritten and copied (exceptions: the application-object and the
PScriptSettings-object).

• Multiple PScript objects of the same type may coexist in PScript (exceptions: the application-object
and the PScriptSettings-object).

• The basic object, you have access to once it is created or opened, is the simulation object:

– A simulation object may hold several component objects (or none, if the simulation is empty).

– A simulation object always holds the simulation parameters (both custom and built-in).

– A simulation object can be assigned to one or more variables.

– A simulation object can be created by opening a simulation or creating a new simulation.

– A simulation object can be invalidated by closing a simulation.

– A simulation object can be saved as a *.pho-file.

– Invalidating a simulation object also invalidates all the component objects, simulation param-
eters, etc. inside the simulation.

– Invalidating a simulation object does not invalidate copies of component objects, simulation
parameters, etc. which have been assigned to a variable.

• The second object is the component object:

13

– A component object represents any valid PHOTOSS component (e.g. the Pulse Generator, a
Numerical BERT or even a Network or Iterator component).

– A component object is a child object of a simulation object.

– A component object can be assigned to one or more variables.

– A component object may include parameters and results (Access to parameters and results
of a component object is described in chapter Access to Simulations, Components, Pa-
rameters and Results (Quickstart Guide) on page 16).

– A parental component object may also include child components if the parent is a network or
an iterator. Of course the child component may itself contain further child components; e.g.
placing an iterator inside a network is allowed.

– A component object can only be accessed through the simulation object until it is copied to a
variable. Thus, invalidating a simulation object automatically invalidates a component object,
unless you have copied it to a variable before.

14

7 PScript Demo Walkthrough

In this chapter we will illustrate how easy it is to create and run a PScript. It is strongly recommended
you take a closer look at the Access to Simulations, Components, Parameters and Results
(Quickstart Guide) on page 16, the PScript Code Samples described in chapter 15 on page 30 and
the PScript Function Reference on page 31.

• Open a PHOTOSS instance.

• Click on the Menu “Tools” ⇒ “PScript Console” to open the PScript console or use the “PS”-Icon
in the icon bar.

• Type the following code into the Code Window: print("Hello PScript User.")

• Save your PScript by using “File” ⇒ “Save as” and assign the name “Hello PScript User.pscript”
to it. Store your PScript in a directory in which you have write permission.

• Click on “Run” ⇒ “Run” to start your PScript (or press “F”).

• The text “Hello PScript User!” should be returned in the Console Window. If the text does not
appear, check your PScript Settings Dialog (page 22), choose “Restore Defaults” and rerun the
script.

• Congratulations, you have just created and executed your first PScript!

• For more complex scripts, please refer to the Access to Simulations, Components, Parameters
and Results (Quickstart Guide) on page 16.

A typical PScript of a more complex simulation might include some of the following, more general steps:

• Initialize PScript parameters / variables

• Create arrays to store the results of your parameter variation

• Open your PHOTOSS simulation

• Setup a main for-loop which iterates over all parameters in your parameter variation

• Adjust component / simulation parameters according to your parameter variation

• Run the PHOTOSS simulation

• Obtain your results / observables

• Clear the simulation

• Define an abort criterion for the parameter variation

• Continue the main for loop until the parameter variation is complete

• Close the simulation

• Examine your result space

15

8 Access to Simulations, Components, Parameters and Results
(Quickstart Guide)

Aside from the PScript settings and the application object (see chapters below), the most important
feature of PScript is the access to the components of a simulation and their parameters and results.
In this chapter, we will learn that just a few function calls will enable us to access the parameters or
results of any component. Please also refer to the PScript Code Samples on page 30 and the PScript
Function Reference on page 31 for more detailed descriptions.

Changing the working directory of PScript:

Before we can open a simulation, we need to switch to the directory in which it resides. We can do
this by either switching to an absolute or relative path:

application.setCurrentDirectory("C:/PScripts/")//Switch to absolute path.

Opening a simulation:

We can open a simulation and assign the simulation object to a variable by using:

1 simulationObject=application.openSimulation("My Simulation Name.pho")

Making a backup of a simulation:

1 simulationObject.saveAs(application.getUserHomeDirectory ()+"/mybackup.pho") // store

backup in the user ’s home directory \bb

Accessing a Component Object:

Before we can actually access a component object, it might be useful to get an overview off all
components in the simulation objects:

1 simulationObject.listComponents () // print a list of all components to the console

Now, accessing a component object through a simulation object can be done by using the “.” operator.
In many cases, it us useful to assign the component object to a variable. You can both use the camel
case notation and the same notation as in the PHOTOSS GUI as long as the name of the component
does not contain spaces. If it does, you can use the camel case notation only. In short, the camel case
notation is always valid. So, if for example the name of the desired component is “AnalyticalFilter1” we
could write:

1 componentObject = simulationObject.AnalyticalFilter1; // access a component object using

the GUI notation , OR - equivalently:

2 componentObject = simulationObject.analyticalFilter1; // access a component object using

the camel case notation

If, instead, the name would be “Analytical Filter 1” you would have to use:

1 componentObject = simulationObject.analyticalFilter1; // access a component object using

the camel case notation

There is also an equivalent which is useful when component objects shall be directly addressed using their
string name regardless whether it contains spaces or not:

16

1 myFilterObject = simulationObject.getComponent("Analytical Filter 1") // access the

component object using ‘‘natural ’’ notation

Accessing parameters of a Component Object:

Most PHOTOSS components have more than one parameter which can be edited in the PHOTOSS
GUI. To get an overview, which parameters are available for your desired component, type:

1 componentObject.listParameters () // print a list of all parameters of the current

component to the console \index{listParameters ()}

Accessing a single parameter in PScript works the following way:

1 parameterValue = componentObject.getParameterValue("Parameter Name")

It is also possible to directly access a parameter value. The same rules as for the component names
apply here as well:

1 parameterValue = simulationObject.componentObject.parameterName // directly access the

parameter value using (e.g.) camel case notation.

If we are interested in the unit of the parameter, we would use:

1 parameterUnit = componentObject.getParameterUnit("Parameter Name")

Setting parameters works in a similar manner:

1 componentObject.setParameterValue("Parameter Name", parameterValue)

Sometimes, you want to access more than one parameter at a time. In these cases, the following
methods are helpful:

1 parameterNames = componentObject.getParameterNames () //read all parameter names into a

string vector

2 parameterValues = componentObject.getParameterValues () // read all parameter values into

a string vector

3 parameterUnits = componentObject.getParameterUnits () //read all parameter units (if they

exist) into a string vector

Accessing results of a Component Object:

Many PHOTOSS components have results which become available at the end of a simulation. So
before we obtain the results, we have to start the simulation:

simulationObject.run()

First, an overview of which results are available for our desired component might be useful. Type:

1 componentObject.listResults ()

2 // or alternatively:

3 simulationObject.componentObject.listResults ()

Accessing a single result value is also easy:

17

1 resultValue = componentObject.getResultValue("Result Name")

2 //or alternatively:

3 resultValue = simulationObject.componentObject.getResultValue("Result Name")

Accessing a result unit (if available) works similarly:

1 resultUnit = componentObject.getResultUnit("Result Name")

2 // or alternatively:

3 resultUnit = simulationObject.componentObject.getResultUnit ()

Sometimes, it is useful to address more than one result at a time. The following functions can be used
to realize this:

1 resultValues = simulationObject.componentObject.getResultValues () // returns a string

vector holding all the result values of a component

2 resultNames = simulationObject.componentObject.getResultNames () // returns a string

vector holding all the result names of a component

3 resultUnits = simulationObject.componentObject.getResultUnits () // returns a string

vector holding all the result units (if they exist) of a component.

Accessing Simulation Parameters:

The simulation parameters can always be accessed through the simulation object as these two objects
are closely connected. First, an overview over all simulation parameters variables might be useful:

1 simulationObject.listSimulationParameters ()

Now, let us read a simulation parameter:

1 myParamName = simulationObject.getSimulationParameterValue("Parameter Name")

Setting a parameter works in a similar manner:

1 simulationObject.setSimulationParameterValue("Parameter Name", parameterValue)

Congratulations! You have already mastered all basic skills necessary to create PScripts. For more
details please refer to the PScript Code Samples in chapter 15, page 30, or the PScript Function
Reference in chapter 16, on page 31.

18

9 PScript and MATLAB R©
This chapter offers a basic overview of PScript and MATLAB R© interaction. Please refer to the PScript
MATLAB R© code example named "1 Matlab Interface Interaction.pscript" in chapter PScript Code Sam-
ples on page 30 for a detailed explanation of every topic listed below:

• PScript can automatically determine whether a version of MATLAB R© which is currently supported
by PHOTOSS is available.

• PScript can assign any (complex) double, float, int or bool value (or a corresponding matrix) to
any existing MATLAB R© variable using the command:
matlab.setValue()

• PScript can currently read any MATLAB R© variable which is either a double or a (complex) matrix
into a PScript variable using the command:
matlab.getValue()

• PScript can pass any string containing any valid MATLAB R© code to the MATLAB R© workspace
which will automatically be evaluated afterwards by using the command:
matlab.eval("a=10+11")

• PScript can define whether to check for or ignore errors that occur while executing MATLAB R©
code (this applies for any MATLAB R© code run in the MATLAB R© workspace). Please refer to the
section PScript Settings Dialog on page 22 for more information.

• PScript can create either a common or a separate MATLAB R© workspace for both the PScript
MATLAB R© environment and the PHOTOSS MATLAB R© Component environment. The default
is that a single, common workspace is used. This can be useful when passing information to or
getting information from MATLAB R© components in the simulation as desired by the user. Please
refer to the section PScript Settings Dialog on page 22 for more information.

19

10 PScript Console Main Window

Figure 2. The PScript Console Main Window is devided into the Code Area (1), the Command History (2) and
the Console Area (3). An inline filter (4) can be used to search through the commands in the command history.

The PScript Console Main Window consists of four main areas which can individually be configured to
your liking:

1. The Code Area contains the program code of your currently active PScript; any loaded PScript will
be displayed here. This is also the area where you can edit your PScripts.

2. The Command History Area contains previously (manually) entered PScript console commands for
easy reuse. It can be cleared by using the PScript Settings menu (see chapter PScript Settings
Dialog on page 22)

3. The PScript Console Area also shows the PScript output and (if you have enabled the option in
the PScript Settings) the date and time information. The output may contain errors, warnings,
and simple information. You can enter and execute any valid PScript or valid Qt Script command.
You can also decide which parts of the PHOTOSS output you want to see in your PScript console
(see Code Example 04 for further details on this topic).

4. An inline filter can be used to search through all commands included in the command history. If,
for example, you want to find all recently used commands containing the phrase “print” , you can
simply type “print” in the inline filter.

20

11 PScript Console Menu Functionality

The following operations can be accessed via the PScript console menu:

• File ⇒ New
Creates a new PScript code file. You will be reminded, if you have any active PScript file which
has not yet been saved.

• File ⇒ Open
Open any existing PScript code file. If you have already have opened an active PScript file, you
will be asked to either discard or save the changes before a new file will be opened.

• File ⇒Save
Save the active PScript code file using its current filename.

• File ⇒ Save as
Save the active PScript code file and change / select the filename.

• File ⇒ Close the PScript Console
Closes the console. You will be asked to save any changes on your active PScript file if you have
not already done so.

• Run ⇒ Run
Runs the active PScript file. If auto includes have been defined, they will be run first (see chapter
PScript Settings Dialog on page 22 for more details.

• Run ⇒ Clear PScript Workspace
The PScript workspace is cleared. All variables and objects will be removed. Clear PScript
Workspace will also automatically be called when you close the PScript Main Window; it will
not be called if you minimize the PScript Window to your task bar.

• Run ⇒ Stop
Stops a running PScript file. Warning: Currently running MATLAB R©calculations will not be
terminated!

• Run ⇒ Clear Console
Removes any output from the PScript console. Clear Console will not remove the variables and
objects currently residing in the PScript workspace. Please use Clear PScript Workspace instead.

• Code Samples ⇒ ...
Opens a PScript Example, containing a wide number of explanations and documented PScript
features. See the Chapter PScript Code Samples for further information.

• Settings ⇒ ...
Opens a dialog where the user can choose the PScript options. Please refer to the chapter PScript
Settings Dialog on page 22 for more details on the specific options.

• Help ⇒ About PScript
Opens a dialog window with copyright information and release dates of the current PScript version.

21

12 PScript Settings Dialog

The PScript Settings Dialog can be accessed through the GUI interface. All PScript settings can also be
set manually by invoking the appropriate function.
Many functions include a set- and a get-method. The get-methods can be used to check the according
PScript Setting.

set / get All
Code set: PScriptSettings.setAll(PScriptSettingsObjekt)

Code get: mySettingsObject = PScriptSettings.getAll()

Default: NA
Description: The get-method reads all PScript Settings into a PScript Settings object which can be
copied. The set-method sets all PScript Settings to the values specified in the given PScript Settings
Object.

Restore Defaults
Code: PScriptSettings.restoreDefaults()

Default: NA
Description: All PScript Settings will be reverted to their original defaults. Invoking the function has
the same effect as clicking on the button “Restore Defaults” in the PScript Settings menu.

12.1 Console Settings

Show Time and Date at Prompt
Code set: PScriptSettings.setShowTimeAndDateAtPrompt(bool setBool)

Code get: myBool = PScriptSettings.getShowTimeAndDateAtPrompt()

Default: true

Description: If set to true, the complete date is shown at the PScript prompt. It includes the day, month,
year and the time in format hours : minutes : seconds. When PScript finishes the execution of a script,
both date and time will be displayed automatically.

Show PHOTOSS Output in PScript Console
Code set: PScriptSettings.setShowPHOTOSSOutputInPScriptConsole(bool setBool)

Code get: myBool=PScriptSettings.getShowPHOTOSSOutputInPScriptConsole()

Default: false

Description: If set to true, all general output of the PHOTOSS console will also be shown in the PScript
console output. This does not include PHOTOSS warnings or errors.

Show PHOTOSS Errors in PScript Console
Code set: PScriptSettings.setShowPHOTOSSErrorsInPScriptConsole(bool setBool)

Code get: myBool = PScriptSettings.getShowPHOTOSSErrorsInPScriptConsole()

Default: true

Description: If set to true and an error occurs during a PHOTOSS simulation, the error will also be
displayed in the PScriptconsole. Disabling this option is not recommended.

Show PHOTOSS Warnings in PScript Console
Code set: PScriptSettings.setShowPHOTOSSWarningsInPScriptConsole(bool setBool)

Code get: myBool = PScriptSettings.getShowPHOTOSSWarningsInPScriptConsole()

Default: false

Description: If set to true all warnings which occur during or prior to the execution of a PHOTOSS
simulation will also be displayed in the PScript console.

Show Script Output in PScript Console
Code set: PScriptSettings.setShowPScriptOutputInPScriptConsole(bool setBool)

Code get: myBool= PScriptSettings.getShowPScriptOutputInPScriptConsole()

Default: true

Description: If set to true, information which is included in a print command in a PScript context (e.g.
print("Hello World")) will be displayed in the PScript output console. Please keep in mind that this

22

includes error and warning messages which are issued by PScript - if a PScript error occurs during the
execution of your PScript and the option is set to false, you will not receive a notification.
Disabling this option is not recommended.

Show Printed Output in PHOTOSS Console
Code set: PScriptSettings.setShowPrintedOutputInPHOTOSSConsole(bool setBool)

Code get: PScriptSettings.getShowPrintedOutputInPHOTOSSConsole()

Default: false

Description: If set to true, information which is included in a print command in a PScript context (e.g.
print("Hello World")) will be displayed in the PHOTOSS output console. This does not include PScript
warnings or errors.

Show PScript Errors in PHOTOSS Console
Code set: PScriptSettings.setShowPScriptErrorsInPHOTOSSConsole(bool setBool)

Code get: myBool = PScriptSettings.getShowPScriptErrorsInPHOTOSSConsole()

Default: true

Description: If set to true, PScript errors will appear in the PHOTOSS error-output console (and the
standard output console). Disabling this option is not recommended.

Show PScript Warnings in PHOTOSS Console
Code set: PScriptSettings.setShowPScriptWarningsInPHOTOSSConsole(bool setBool)

Code get: myBool = PScriptSettings.getShowPScriptWarningsInPHOTOSSConsole()

Default: false

Description: If set to true, PScript warnings will appear in the PHOTOSS warnings-output console (and
the standard output console).

12.2 Editor Settings

Show Code Line Numbers
Code set: PScriptSettings.setShowCodeLineNumbers(bool setBool)

Code get: myBool = PScriptSettings.getShowCodeLineNumbers()

Default: true

Description: If set to true, the code line numbers will be displayed on the left of the PScript Code Area.

Use Syntax Highlighting
Code set: PScriptSettings.setUseSyntaxHighlighting(bool setBool)

Code get: myBool = PScriptSettings.getUseSyntaxHighlighting()

Default: true

Description: If set to true, syntax highlighting is enabled in the PScript Code Area. Please refer to the
chapter PScript Syntax Highlighting and Code Assistant for more details.

Use Syntax Highlighting in Console
Code set: PScriptSettings.setUseSyntaxHighlightingInConsole(bool setBool)

Code get: myBool = PScriptSettings.getUseSyntaxHighlightingInConsole()

Default: false

Description: If set to true, syntax highlighting will be enabled in the PScript console. Please refer to the
chapter PScript Syntax Highlighting and Code Assistant for more details.

Use Code Assistant
Code set: PScriptSettings.setUseCodeAssistant(bool setBool)

Code get: PScriptSettings.getUseCodeAssistant()

Default: true

Description: If set to true, the code assistant will be enabled in the PScript Code Area. Please refer to
the chapter PScript Syntax Highlighting and Code Assistant for more details.

23

12.3 Log File Settings

Use Log File
Code set: PScriptSettings.setUseLogFile(bool setBool)

Code get: mybool = PScriptSettings.getUseLogFile()

Default: false

Description: If set to true, PScript will create a log file which contains various information depending on
the following log file settings.

Include Time and Date in Log File
Code set: PScriptSettings.setIncludeTimeAndDateInLogFile(bool setBool)

Code get: myBool = PScriptSettings.getIncludeTimeAndDateInLogFile()

Default: true

Description: If set to true, the time and date information at the beginning of the execution of the PScript
and at after the execution of the PScript will be included in the log file.

Include Detailed Information in Log File
Code set: PScriptSettings.setIncludeDetailedInformationInLogFile(bool setBool)

Code get: mybool = PScriptSettings.getIncludeDetailedInformationInLogFile()

Default: true

Description: If set to true, information which is included in a print command in a PScript context (e.g.
print("Hello World”)!) will be included in the log file.

Include Errors in Log File
Code set: PScriptSettings.setIncludeErrorsInLogFile(bool setBool)

Code get: myBool = PScriptSettings.getIncludeErrorsInLogFile()

Default: true

Description: If set to true, PHOTOSS errors will be included in the log file.

Include Warnings in Log File
Code set: PScriptSettings.setIncludeWarningsInLogFile(bool setBool)

Code get: myBool = PScriptSettings.getIncludeWarningsInLogFile()

Default: true

Description: If set to true, PHOTOSS warnings will be included in the log file.

Use Custom Log Save Path
Code set: PScriptSettings.setLogFileUseCustomSavePath(bool setBool)

Code get: myBool = PScriptSettings.getLogFileUseCustomSavePath()

Default: false

Description: If set to true, the user can define a specific, absolute save path under which the PScript log
will be saved. If set to false, PScript will save log files under the default path:
C:/Documents and Settings/USERNAME/Application Data/Lenge/PHOTOSS X.YZ/PScript

Set / Get Custom Log Save Path
Code set: PScriptSettings.setLogFileCustomSavePath(string myPathString)

Code get: mystring = PScriptSettings.getLogFileCustomSavePath()

Default: C:/Documents and Settings/USERNAME/Application Data/Lenge/PHOTOSS X.YZ/PScript

Description: Sets the save path for the PScript logs to the given path string.

Set / Get Overwrite Log File
Code set: PScriptSettings.setLogFileOverwrite(bool setBool)

Code get: myBool = PScriptSettings.getLogFileOverwrite()

Default: false

Description: Sets the bool value which defines whether an old PScript log-file will be overwritten (true)
or if the new log information will be appended to the log (false).

24

12.4 History Settings

Use History
Code set: PScriptSettings.setUseHistory(bool setBool)

Code get: myBool = PScriptSettings.getUseHistory()

Default: true

Description: If set to true, the command history will be displayed in the PScript Command History Area.
The command history does only apply to commands which have been entered manually at the PScript
prompt. It does not apply to scripts which are started by using the “run” buttons.

Clear History
Code: PScriptSettings.clearCommandHistory()

Default: NA
Description: If clicked (or called), the history will be cleared.

12.5 MATLAB R© Settings

Use identical Matlab workspace for PHOTOSS and PScript
Code set: PScriptSettings.setUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript(bool setBool)

Alternative code set: matlab.setUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript(bool setBool)

Code get: myBool = PScriptSettings.getUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript()

Alternative Code get: matlab.getUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript()

Default: true

Description: If set to true, PHOTOSS Matlab components and the PScript MATLAB R© workspace will
be identical. You can automatically access PHOTOSS MATLAB R© component workspace contents when
using PScript. Please bear in mind that PScript will access the Matlab component workspace before
or after a simulation run but not during a simulation run. For more details please refer to the chapter
PScript and MATLAB R© on page 19. If set to false, PScript and PHOTOSS MATLAB R© components
will use separate workspaces; variables cannot be transferred between the two workspaces.

Check for Matlab Errors
Code set: PScriptSettings.setCheckForMatlabErrors(bool setBool)

Alternative code set: matlab.setCheckForMatlabErrors(bool setBool)

Code get: myBool = PScriptSettings.getCheckForMatlabErrors()

Alternative code get: myBool = matlab.getCheckForMatlabErrors()

Default: true

Description: If set to true, errors and warnings which occur during the execution of a MATLAB R© script
will also automatically be shown in the PScript console. If set to false, the errors will not be shown. This
means, that a running PScript will never be aborted even if MATLAB R© errors will occur. Disabling this
option is not recommended.

Break on Matlab Errors
Code set: PScriptSettings.setBreakOnMatlabErrors(bool setBool)

Alternative code set: matlab.setBreakOnMatlabErrors(bool setBool)

Code get: myBool = PScriptSettings.getBreakOnMatlabErrors()

Alternative code get: myBool = matlab.getBreakOnMatlabErrors()

Default: true

Description: If set to true, errors which occur during the execution of a MATLAB R© script will result
in a PScript error which will abort the currently running PScript. If set to false, the currently running
MATLAB R© script will be aborted but the currently running PScript will be resumed. Disabling this
option is not recommended.

Matlab Timeout (in Seconds)
Code set: PScriptSettings.setMatlabTimeoutInSeconds(int setInt)

Alternative code set: matlab.setMatlabTimeoutInSeconds(int setInt)

Code get: myInt = PScriptSettings.getMatlabTimeoutInSeconds()

Alternative code get: myInt = matlab.getMatlabTimeoutInSeconds()

Default: 10.000 seconds

25

Description: Allows the user to specify a timeout value for the execution of MATLAB R© scripts during
the execution of a PScript / a PHOTOSS simulation. If MATLAB R© has not finished the execution of a
script during the timeout period, a popup window will appear which allows the user to choose between
several options regarding how to deal with the MATLAB R© timeout. Please make sure that the timeout
has been set to a sufficiently high time interval for your purposes

12.6 Include Settings

You can use the include settings to specify paths where your own (Sub-)PScripts reside. When you
are invoking an include() operation, PScript will automatically search for the included PScript in the
directories you have specified in the PScript include settings. For more details please refer to chapter
PScript Code Samples, Example No. 16.

Add Include Path
Code: PScriptSettings.addIncludePath(string pathString)

Default: NA
Description: Adds a new path to the include list. PScript will not check whether the supplied path is
valid. If the string you have specified is a file path and not a directory path, PScript will issue a warning.
Keep in mind that you can also manually change any path of the Auto Include list from an absolute path
to a relative path.

Remove Include Path
Code: PScriptSettings.removeIncludePath(string pathString)

Default: NA
Description: Removes the specified item from the include list. If the item you have specified does not
exist, PScript will issue a warning.

Get Include Paths
Code: incVec = PScriptSettings.getIncludePaths()

Default: NA
Description: Returns a string vector which includes all include paths in the specified order. If no include
paths have been defined, an empty vector will be returned.

Include Paths Contain
Code: myBool = PScriptSettings.includePathsContain(string pathString)

Default: false

Description: Returns a bool which specifies whether the supplied include path is already present in the
include list.

Move Up / Down Include Path
Code up: PScriptSettings.moveUpIncludePath(string pathString)

Code down: PScriptSettings.moveDownIncludePath(string pathString)

Default: NA
Description: Moves the specified include path item up (or down) in the include path queue. If the
specified item does not exist, PScript will issue a warning.

12.7 Auto Include Settings

The PScript Auto Include Settings work similar to the Include Settings with one exception: The script(s)
you have specified will be run automatically every time when PScript is opened. This can become very
convenient when you have designed global startup scripts or libraries which would be tedious to include
from hand in each script. Please keep in mind that the command clearWorkspace destroys all libraries
or objects and variables which you might have included in your Auto Includes. To make these objects
available without having to restart PScript, you can use the command:
PScriptSettings.runAutoIncludes()

26

Add Auto Include
Code: PScriptSettings.addAutoInclude(string pathString)

Default: NA
Description: Adds a full (absolute) path to the Auto Include list. PScript will not check whether the
supplied path is valid. If the string you have specified is a directory path and not a file path, PScript
will issue a warning

Run Auto Includes
Code: PScriptSettings.runAutoIncludes()

Default: NA
Description: All PScripts which are included in the PScript Settings Auto-Include list, are run in the given
order. This function can be useful when you have cleared the PScript workspace using .clearWorkspace()

and you want to quickly restore all your libraries, etc. without having to call each individual script
manually.

Remove Auto Include
Code: PScriptSettings.removeAutoInclude(string pathString)

Default: NA
Description: Removes the specified item from the Auto Include list. If the item you have specified does
not exist, PScript will issue a warning.

Get Auto Includes
Code: autoVec = PScriptSettings.getAutoIncludes()

Default: NA
Description: Returns a string vector which includes all Auto Includes in the specified order. If no Auto
Includes have been defined, an empty vector will be returned.

Auto Includes Contain
Code: myBool = PScriptSettings.autoIncludesContain(string pathString)

Default: false

Description: Returns a bool which specifies whether the supplied Auto Include is already present in the
Auto Include list.

Move Up / Down Auto Include
Code up: PScriptSettings.moveUpAutoInclude(string pathString)

Code down: PScriptSettings.moveDownAutoInclude(string pathString)

Default: NA
Description: Moves the specified Auto Include item up (or down) in the Auto Include queue. If the
specified item does not exist, PScript will issue a warning.

27

13 Using PScript in Command Line Mode / Using PScript with
Condor R©

You can also start a PScript and PHOTOSS from the Command Line Interface (CLI). Therefore, you
need to change to your PHOTOSS installation directory. In the following example we will assume that
it has been set to: C:\PHOTOSS\. The Default path would normally be:
C:\Documents and Settings\USERNAME\Application Data\Lenge\PHOTOSS X.YZ\

You can now load and automatically execute any PScript by using the following syntax:
C:\PHOTOSS\PHOTOSS.exe -r "ScriptPath\Scriptname.pscript"

Where the phrase ScriptPath stands for the full path to where your PScript actually resides. E.g. C:\

MyScripts\myPScript.pscript.

If you want to execute the PScript in a PHOTOSS instance that is already opened, type:

C:\PHOTOSS\PHOTOSS.exe -c -r "ScriptPath\Scriptname.pscript"

You should also keep in mind that for certain scenarios it may be useful to automatically close the
PHOTOSS application after the PScript has finished - e.g. for the combined use of PHOTOSS, PScript
and Condor R©. In this case, you may use the line:

application.close()

as a last line in your PScript. For example, if you want to submit a PHOTOSS and PScript job which
should be computed on a grid by using Condor R© it is necessary that both PScript and PHOTOSS
terminate after the job has been completed (so that the grid computing tool “knows” that the job has
been finished).

For more information on how to create PHOTOSS / PScript Condor R© Jobs, example job files and how
to distribute these jobs to various machines in your simulation pool, please refer to the PHOTOSS Grid
Computing Manual which is also included in your PHOTOSS installation.

28

14 PScript Syntax Highlighting and Code Assistant

The PScript editor offers syntax highlighting (SHL) and a comfortable code assistant to make it easier
for you to create your own PScripts. SHL can be enabled and disabled using the PScripts settings; the
default setting is true. The following SHL features are currently included:

• code comments (green)

• headlines for code comments (green)

• Qt script basic functionality such as for and if statements (dark blue)

• int, double and float values (dark blue)

• strings (red)

• PScript prefixes such as matlab and application (blue)

• PScript MATLAB R©-specific suffixes and functions such as matlab.setValue() (blue and set in italics)

• application and simulation suffixes and functions such as application.openSimulation()(blue and set
in italics)

• user defined variables(black)

• numbers (dark red)

The code assistant can be enabled and disabled using the PScript settings (see page 22), the default
setting is true. When you are typing your PScript code, the code assistant will automatically come up
with suggestions to complete the current expression.
For example, when trying to append a suffix to a matlab.-expression, the code assistant will automatically
offer all valid suffixes for the PScript MATLAB R© object, such as matlab.getValue(), matlab.setValue(), etc.

To accept a suggestion of the assistant, highlight it using the arrow keys “up” and “down” or by clicking
in the suggestion list and press “Return” or “Tab”. If you do not want to accept a suggestion of the code
assistant, press “Esc” to close the assistant or keep writing.

29

15 PScript Code Samples

To create a more powerful PScript, the following code samples might be extremely helpful. You can
access them by selecting Code Samples⇒ ... from the PScript main menu. You will need write permission
in your user home directory to successfully run the examples. The default path is:
C:/Documents and Settings/USERNAME/Application Data/Lenge/PHOTOSS X.YZ/,
where X.YZ denotes the currently installed version of PHOTOSS.

• 01 Hello World.pscript demonstrates how to write output to the PScript console.

• 02 Open And Run Simulation.pscript teaches you how to use PScript to open, run, clear and close a
PHOTOSS simulation

• 03 Directories.pscript will make you familiar with the syntax necessary to switch the PScript direc-
tory and use paths.

• 04 Script Output.pscript shows you how to direct Output to the PScript and / or PHOTOSS console

• 05 Investigate Simulation.pscript will illustrate how all simulation parameters, components and com-
ponent parameters inside a PHOTOSS simulation can be accessed by PScript.

• 06 Change Parameter.pscript will enable you to change parameters of single components and the sim-
ulation parameters. You will learn how to change parameters of the type “double”, “radio box”,
“pull down menu” and “formula” / “string”.

• 07 Change Parameter for a Type of Component.pscript enables you to change parameters for a group
components which belong to the same component type (e.g. “Analytical Filter”). Also introduces
the PScript “foreach” functionality.

• 08 Reflective Simulation.pscript explains how to evaluate results of components / analyzers and
continue a parameter variation until user-defined criteria are met.

• 09 Creating Components.pscript shows how components can be created and linked by using PScript.

• 10 Open And Run Parameter Variation.pscript explains how to create, run and analyze a parameter
variation in PScript.

• 11 Matlab Interface Interaction.pscript demonstrates you how to use both the MATLAB R© interface
and PScript at the same time. You will learn how to call MATLAB R© scripts using PScript and
how to exchange data between the MATLAB R© and PScript workspace.

• 12 Simulation Parameters.pscript shows how simulation parameters can be accessed and changed
using PScript.

• 13 Type Conversions.pscript demonstrates some basic type conversions in PScript.

• 14 Simulation Control Handling.pscript illustrates the basic concept of how to handle PHOTOSS sim-
ulations with PScript.

• 15 Handling Networks and Iterators.pscript teaches you how to set parameters or access results of
components inside a network or iterator component.

• 16 Includes.pscript will familiarize you with several easy ways to include Sub-PScripts containing
sub-functions, etc. in your Main PScript.

• 17 Generic Scripting.pscript demonstrates how generic scripts can be created which offer great flex-
ibility and functionality at the same time.

30

16 PScript Function Reference

The following list includes all PScriptfunctions for the interaction between PScript, PHOTOSS and
MATLAB R©. Each function will be followed by a short example code and explanation to illustrate how
it works.

16.1 PScript Options / Settings

Please refer to the chapter 12 - PScript Settings Dialog on page 22 for a detailed explanation of the
PScript settings and all available functions.

31

16.2 General Functions

General functions can be called directly in the PScript context. They do not have to be called on any
object. Table 1 lists all the general functions which will be explained in more detail below.

Table 1. Overview of General Functions

Function Name Short description Page
foreach iterates over all elements of a vector 32
clearWorkspace() removes all objects and variables 32
collectGarbage() invokes garbage collection 32
execute() executes CMD command 32
include() include .pscript file 32
resetEngine() invoke clearWorkspace() and runAutoIncludes() 32
runAutoIncludes() execute all automatically included .pscript files 32
who() list all available objects in the workspace 33

Function: foreach(double array, function(current element name){function code xyz})

Code: foreach(s.getComponentsByType("Laser"), function(c){c.setParameterValue("Gamma","1.3")})

Description: Iterates overall elements of a one-dimensional input vector and carries out the function
specified in the function code section. The current element can be addressed by using the “current
element name” inside the function code.

Function: clearWorkspace()

Code: clearWorkspace()

Description: Removes all user-defined objects and variables (e.g. arrays, vectors, scalar values, etc.) from
the PScript workspace. Note that PScript Auto Includes will not be executed.

Function: collectGarbage()

Code: collectGarbage()

Description: Invokes the garbage collection to remove inaccessible objects (etc.) in the script environment.

Function: execute(string commandLineCode)

Code: execute("cmd.exe")

Description: Executes the command given in the commandLineCode string. Please keep in mind that the
current program directory of PScript and PHOTOSS might also have an effect on the programs you
invoke with the execute-command.

Functions: include(string scriptName)//if the path is present in the include list

include(string scriptNamePath)//if the path is not present in the include list

Code: include("myNewScript.pscript")

Description: When called, the code specified in PScript file whose name is given by the string scriptName

will be evaluated. If the path where the given PScript resides is present in the include list, you just have
to specify the script name. If the path is not present in the include list, you have to specify an absolute
or relative path. Refer to chapter 12 - PScript Settings Dialog on page 22 for more details on the include
list.

Function: resetEngine()

Code: resetEngine()

Description: Same as clearWorkspace with the exception that PScriptAuto Includes will be executed.

Function: runAutoIncludes()

Code: runAutoIncludes()

Description: Same as PScriptSettings.runAutoIncludes() (see page 32).

32

Function: who()

Code: who()

Code: application.who()

Code: matlab.who()

Code: PScriptSettings.who()

Description: Calling the who() function will produce a list of all currently available objects in the PScript
workspace which will be displayed in the console. The list contains all variables of primitive data types
such as int, double, bool, string and all functions as well as all ”‘objects”’ in the workspace which can
be created by calling myObject = new Object(). The who function can be called on the application, matlab

and PScriptSettings as well to show all functions (and objects) contained in these objects. Please keep in
mind that who does not work recursively and only displays objects at the top level.

33

16.3 Generating Random Numbers in PScript

To generate random numbers, you have to call the functions on an rng object which is automatically
available to you once a PScript workspace has been opened. All functions related to the generation
of random numbers are listed in table 2 and are explained in more detail below. Please note that the
PScript Random Generator is in not connected to the random generator which is used in a PHOTOSS
simulation! If you want to change the random generator settings of a simulation, you have to change the
corresponding simulation parameter, e.g. by using
s.setSimulationParameterValue("randomGeneratorSeed", -100), etc.

Table 2. Overview of Random Generator-Related Functions

Function Name Short description Page
rng.fastpoisson() generate a fast poisson-distributed number 34
rng.gauss() generate a normally-distrubuted number 34
rng.getDefaultSeed() returns the default seed for the rng object 34
rng.negExp() generate a negatively exponentially-distributed number 34
rng.pareto() generate a pareto-distributed number 34
rng.poisson() generate a poisson-distributed number 34
rng.setDefaultSeed() set the default seed for the rng object 34
rng.setDeterministic() set the rng to deterministic mode 35
rng.setRandom() set the rng to random mode 35
rng.uniform() generate a uniformly-distributed number 35

Function: double fastpoisson(double lambda)

Code: alpha = rng.fastpoisson(2.31)

Description: Returns a fast Poisson-distributed double random number with the Poisson parameter
lambda.

Function: double gauss(double mean, double var)

Code: alpha = rng.gauss(0.43, .084)

Description: Returns a normally distributed double random number with specified mean and variance.

Function: int getDefaultSeed()

Code: default_seed = rng.getDefaultSeed()

Description: Writes the default seed for the PScript random generator of the current simulation into a
PScript variable.

Function: double negExp(double lambda)

Code: alpha = rng.negExp(2.31)

Description: Returns a negatively exponentially distributed random number with parameter lambda.

Function: double pareto(double min, double mean)

Code: alpha = rng.pareto(2.0, 1.34)

Description: Returns a Pareto-distributed double random number larger or equal to the minimal value
and with specified mean.

Function: double poisson(double lambda)

Code: alpha = rng.poisson(2.31)

Description: Returns a Poisson-distributed double random number with the Poisson parameter lambda.

Function: setDefaultSeed(int seed)

Code: rng.setDefaultSeed(-324525)

Description: Sets the default seed for the PScript random generator. This default seed will be used when
calling setDeterministic() without a parameter.

34

Function: setDeterministic(int seed)

Code: rng.setDeterministic(-352215)//Supply a user seed

Alternative Code: rng.setDeterministic()//Use the default seed

Description: Sets the PScript random generator of the current simulation to deterministic mode and
supplies a seed for the generation of random numbers. The seed must be chosen to have a negative sign.
If no integer seed is supplied, the default-seed for the random generator will be chosen.

Function: setRandom()

Code: rng.setRandom()

Description: Sets the PScript random generator of the current simulation to a pseudo random mode.
Each time you restart the current simulation, the random generator will be initiated with a different,
(semi-)randomly chosen seed.

Function: double uniform(double min, double max)

Code: alpha = rng.uniform(0.00 , 1.00)

Description: Returns a uniformly distributed double random number in the interval [min, max].

35

16.4 Functions concerning the application class:

The functions concerning the PHOTOSS application class can only be called on the application object.
All functions are listed in table 3 and are explained in detail below.

Table 3. Overview of Application-Related Functions

Function Name Short description Page
application.appendStringToFile() appends a given string to a file 36
application.close() closes PHOTOSS and PScript 36
application.closeSimulations() closes all opened simulations 36
application.copyFromTo() copies all files from a given folder to another folder 37
application.createDirectory() creates a new directory 37
application.deleteDirectory() deletes an existing directory 37
application.deleteFile() deletes specified file 37
application.deleteFileType deletes all files of specified type 37
application.doesFileExist returns, whether a file or directory exists at a given path 37
application.getApplicationDataDirectory() returns the path where PHOTOSS saves files, etc. 37
application.getCurrentDirectory() returns path of the working directory of PScript 38
application.getPHOTOSSExecutableDirectory() returns the path to the PHOTOSS executable 37
application.getPHOTOSSOptionDescription() returns the description of specified option 37
application.getPHOTOSSOptionValue() returns the value of the specified option 37
application.getScriptDirectory() returns the directory of current PScript 38
application.getSimulations() returns a list of all opened simulations 38
application.getUserHomeDirectory() returns path of the user home directory 38
application.info() displays text in the console 38
application.listPHOTOSSOptions() lists all PHOTOSS options 38
application.loadVariables() loads all or some selected variables from a file 38
application.newSimulation() creates and saves a new simulation 38
application.openSimulation() opens a simulation 38
application.readStringArrayFromFile() reads data from a file and stores it into a string array 38
application.saveVariables() saves all or some selected variables to a file 38
application.setCurrentDirectory() sets the working directory of PScript 38
application.setPHOTOSSDefaultOptions() reset all PHOTOSS options to default 39
application.setPHOTOSSOptionValue() set specified PHOTOSS option 39
application.timestamp() returns a current timestamp 39
application.who() lists all objects contained in the application object 33
application.writeStringArrayToFile() reads data from a string array and stores it into a file 39

Function: application.appendStringToFile(string destinationPath)

Code: application.appendStringToFile("C:\\Test\\")

Description: This function appends a string to a given file in the specific folder given by destinationPath.
The string will be add in a new row after the last given row of the file. Absolute and relative paths are
possible.

Function: application.close()

Code: application.close()

Description: Closes the PScript main window and (!) the PHOTOSS application. This function should
be used when operating in the batch mode in combination with a grid computing tool because the grid
computing tool might require PHOTOSS to shut down in order to acknowledge that the current job has
been completed. Support for this functionality will be brought to you in future releases.

Function: application.closeSimulations()

Code: application.closeSimulations()

Description: Closes all opened Simulations.

36

Function: application.copyFromTo(string sourcePath, string destinationPath)

Code: application.copyFromTo("C:\\Test\\", "D:\\Example\\")

Description: Copies all files in the folder given by sourcePath to the folder specified by the argument
destinationPath If the destination folder does not exist, PScript will try to create it. If the source folder
does not exist, an error message will be displayed.

Function: application.createDirectory(string directoryPath)

Code: application.createDirectory("C:\\Test\\")

Description: Creates a new, empty directory for the given directory path. If the directory already exists,
nothing will happen. An error message will be displayed if the directory can not be created.

Function: application.deleteDirectory(string directoryPath)

Code: application.deleteDirectory("C:\\Test\\")

Description: Deletes an existing directory for the given directory path and all files and subfolders within.

Function: application.deleteFile(string fileNameString)

Code: application.deleteFile("useless.pho")

Description: Deletes the file with given name in the directory which is specified by .getCurrentDirectory()

as a default. You can also specify a string which holds the absolute path to a file you want to delete.
Please keep in mind that PScript deletes the given file permanently - it will not be moved to the recycle
bin. A message will be displayed in the PScript console, if the file is deleted successfully. If the file you
have specified does not exist, a warning will be issued by PScript.

Function: application.deleteFileType(string DirectoryString, string fileTypeString)

Code: application.deleteFileType("*.pho")

Alternative Code: application.deleteFileType("pho")

Description: Deletes all types of the given type in the directory which is specified by .getCurrentDirectory()

as a default. You can also specify a string which holds the absolute path to a directory in which you want
to delete all files of the given type. Please keep in mind that PScript deletes the given files permanently -
they will not be moved to the recycle bin. If no file(s) of the type you have specified do exist, a warning
will be issued by PScript.

Function: bool application.doesFileExist(string filePath)

Code: application.doesFileExist("C:\\Test.pscript")

Description: Returns true, if a file or directory will exist for a given file path.

Function: string application.getApplicationDataDirectory()

Code: mystring = application.getApplicationDataDirectory()

Description: Returns a string containing the directory which is used by PHOTOSS to save program
options, etc. Note that you do need permission to write data to this directory or PHOTOSS / PScript
may not run properly. The default directory is:
C:/Documents and Settings/USERNAME/Application Data/Lenge/PHOTOSS X.YZ

Function: string application.getPHOTOSSExecutableDirectory()

Code: mystring = application.getPHOTOSSExecutableDirectory()

Description: Returns a string containing the name of the directory in which the PHOTOSS.exe file of
the currently opened instance of PHOTOSS resides.

Function: string application.getPHOTOSSOptionDescription(string optionNameString)

Code: myString = application.getPHOTOSSOptionDescription("forceClearPromptly")

Description: Displays the description of the given PHOTOSS option in the PScript Console. Trying to
access non-existing options will produce an error. Use application.listPHOTOSSOptions() to get an overview
of which options are available. Keep in mind that these options are the same as in the PHOTOSS GUI.

Function: bool /string application.getPHOTOSSOptionValue(string optionNameString)

Code: myOptionBool = application.getPHOTOSSOptionValue("forceClearPromptly")

Description: Read the given PHOTOSS option value into a string or boolean variable (depending on
the type of option you have specified). Trying to access non-existing options will produce an error. Use
application.listPHOTOSSOptions() to get an overview of which options are available. Keep in mind that
these options are the same as in the PHOTOSS GUI.

37

Function: string application.getScriptDirectory()

Code: mystring = application.getScriptDirectory()

Description: Returns a string containing the name of the directory in which the currently running PScript
resides. This function can only be evaluated during a script run. It is useful when you want access to
directories and files relative to the actively running script.

Function: simulationObject[] application.getSimulations()

Code: mySimulationArray = application.getSimulations()

Description: Returns a vector containing the names of all active PHOTOSS simulations.

Function: string application.getUserHomeDirectory()

Code: mystring = application.getUserHomeDirectory()

Description: Returns a string containing the path to the current user’s home directory

Function: string application.info(string message)

Code: application.info("This is a test message.")

Description: Prints a string to both the PHOTOSS application and the PScript output consoles.

Function: application.loadVariables(string filePathString)

Code: application.loadVariables("C:\\Test\\PScript.xml")

Description: This function loads variables from a XML-File at a given filepath. If no filepath is specified,
the file will be loaded from the UserHomeDirectory.

Function: application.listPHOTOSSOptions()

Code: application.listPHOTOSSOptions()

Description: Lists all available PHOTOSS options and their current setting in the PScriptconsole.

Function: application.newSimulation(string filePathString)

Code: application.newSimulation("C:\myNewSimulation.pho")

Description: Creates a new, empty simulation and saves it to the specified filePathString. If the path
(and filename) specified in the filePathString is not valid, PScript will issue an error.

Function: simulationObject application.openSimulation(string filename)

Code: s = application.openSimulation("MyExampleSimulation.pho")

Description: Opens the specified simulation file (*.pho) with the PHOTOSS application. If no absolute
path is given, PScript will try to open a simulation relative to the path specified in
application.getCurrentDirectory()

Function: application.readStringArrayFromFile(string sourcePath)

Code: application.readStringArrayFromFile("C:\\Test\\")

Description: This function reads data from a given file in the specific folder given by sourcePath and stores
it into a string array. Absolute and relative paths are possible. The whole data from one row will be
stored in one array position as a string. The first row is stored in the first position of the array and so
on.

Function: application.saveVariables(string filePathString, string variables)

Code: application.saveVariables("C:\\Test\\", ["testVariable1","testVariable2","testVariable3"])

Description: This function saves specific variables into a XML-File at a given filepath. If no variables are
specified, all variables will be saved at the given destinationPath. If there are no arguments, all variables
will be stored in the ScriptDirectory. If the ScriptDirectory is empty, all variables will be stored in the
UserHomeDirectory.

Functions: application.setCurrentDirectory(string pathString)

string application.getCurrentDirectory()

Code set: application.setCurrentDirectory("C:/MyTestDirectory")

Code get: myDir = application.getCurrentDirectory()

Description: Set-method changes the current directory to the specified directory. This is the directory,
from which PScript and PHOTOSS will open or save to simulation files. The get-method will read the
directory into a string.

38

Function: bool application.setPHOTOSSDefaultOptions()

Code: application.setPHOTOSSDefaultOptions()

Description: Resets all PHOTOSS options to their default value.

Function: application.setPHOTOSSOptionValue(string optionNameString bool / string optionValue)

Code: application.setPHOTOSSOptionValue("forceClearPromptly", true)

Description: Set the given PHOTOSS option to the specified value (either a bool or a string). Trying to
access non-existing options will produce an error. Use application.listPHOTOSSOptions() to get an overview
of which options are available. Keep in mind that these options are the same as in the PHOTOSS GUI.
However, the GUI names have been abbreviated for easy access.

Function: string application.timestamp()

Code: application.timestamp()

Description: This function will return a current timestamp based on the system clock with the following
structure: timestamp = year + month + day + ”T” + hours + minutes + seconds; e.g. 20130503T112235.

Function: application.writeStringArrayToFile(string destinationPath)

Code: application.writeStringArrayToFile("C:\\Test\\")

Description: This function writes data from a string array and writes it into a given file in the specific
folder given by destinationPath. Absolute and relative paths are possible. The function iterates over the
whole array from the beginning to the end. The string in the first position of the array will be stored in
the first row of the given file and so on. If the file is not empty, the previous data will be overwritten.

39

16.5 Functions concerning the simulation class:

Please note that these functions only work if you have already opened at least one simulation by using
sim = application.openSimulation().

All functions need to be called on a simulation object which will referred to as sim for the remainder
of this paragraph. The functions are listed in table 4 and are explained in more detail below.

Table 4. Overview of Simulation-Related Functions

Function Name Short description Page
sim.clear() clears the simulation 40
sim.close() closes the simulation 40
sim.containsComponent() returns whether the component type exists in given

simulation, network or iterator
40

sim.deleteComponent() deletes specified component 41
sim.deleteAllComponents() deletes all components 41
sim.getComponent() returns component object with specified name 41
sim.getComponents() returns all component objects in a list 41
sim.getComponentsByType() returns all component objects of specified type 41
sim.investigate() show all components and parameters in specified sim-

ulation
41

sim.isOpen() returns whether the simulation is opened 41
sim.listComponents() lists all components in the simulation 41
sim.run() runs the simulation 41
sim.save() save the simulation 42
sim.saveAs() save the simulation under specified path and file

name
42

Function: simulationObject.clear()

Code: mySimulation.clear()

Description: Clear the currently selected simulation. Clearing a simulation does not delete the results
or parameters of the simulation in the PHOTOSS workspace. You can still access the results using
.getResultValue(), etc.

Function: simulationObject.close()

Code: mySimulation.close()

Description: Closes the currently selected simulation. If you have made any changes to the simulation
setup (parameters, etc.), you will be asked if you want to save the simulation if you have not already
done so.

Function: componentObject[] simulationObject.containsComponent(string componentName)

Code:

1 mySimulation.containsComponent("componentName") // Return all components with the name "

componentName" in the whole simulation.

2 mySimulation.containsComponent("beginningNamePart*") // Return all components that begin

with the phrase "namePart" in their name.

3 mySimulation.containsComponent("*endNamePart") // Return all components that end with

the phrase "namePart" in their name.

4 mySimulation.myNetwork.containsComponent("componentName") // Return all components named

"componentName" in the specified network and subnetworks.

5 mySimulation.myNetwork.containsComponent("beginningNamePart*") // Return all components

that begin with the name phrase "beginningNamePart" in the specified network and

subnetworks.

6 mySimulation.myNetwork.containsComponent("*endNamePart") // Return all components that end

with the name phrase "endNamePart" in the specifies network and subnetworks.

40

Description: This function can be used to supply a name or name phrase of the desired component(s).
It will return a vector holding all occurrences of the component in the simulation or network. If no
component with the specified name or name phrase exists in the simulation or network, the function
returns an empty vector. Keep in mind, that the name of a component is unique when considering a
single network level. Components in different subnetworks can have the same name(s), though! However,
they can be accessed without ambiguity since the returned component vector automatically contains the
whole address information in which subnetwork the component resides. Use componentVector[i].getName()

to receive the full address of the component.

Function: simulationObject.deleteComponent(string componentNameString)

Code: mySimObject.deleteComponent()

Description: Deletes the specified component in the given simulation. The component (and its parameters
and results) will be completely removed from the simulation. The function can also be called on a com-
ponent object object and it will directly delete the component. Trying to delete non-existing components
will issue an error.

Function: simulationObject.deleteAllComponents()

Code: mySimObject.deleteAllComponents()

Description: Deletes all components in the given simulation. This function is the same as calling
deleteComponent() on every component in the simulation manually. If a simulation does not contain any
components, the function will return false.

Function: componentObject simulationObject.getComponent(string componentName)

Code: myFilter = mySimulation.getComponent("Filter1")

Description: Returns a component object with the desired name from the currently active simulation.
PHOTOSS will automatically ensure that each component name on the same network level is unique. If
the component with the desired name in the simulation does not exist, PScript will throw an exception.

Function: componentObject simulationObject.getComponents()

Code: myFilter = mySimulation.getComponents()

Description: Returns all component objects in a list from the currently active simulation.

Function: componentObject[] simulationObject.getComponentsByType(string typeName)

Code: allCurrentFiltersArray = mySimulation.getComponentsByType("Analytical Filter")

Description: Returns a vector which includes all component objects of the specified type in the given
simulation. Components of the specified type which reside in (sub-)network or an iterator will always
be included. If no component of the specified type does exist in the given PHOTOSS simulation, the
function returns an empty vector

Function: simulationObject.investigate()

Code: mySimObject.investigate()

Description: Lists all available components, component parameters and results of the given simulation.
Please keep in mind that the results will only be available after the simulation has finished.

Function: bool simulationObject.isOpen()

Code: isSimOpen = mySimulationObject.isOpen()

Description: Returns a bool which denotes whether the given simulation (object) is opened (true) or not
(false).

Function: simulationObject.listComponents()

Code: mySimulationObject.listComponents()

Description: Displays an overview of all components inside the given simulation in the PScript console

Function: simulationObject.run()

Code: mySimulationObject.run()

Description: Starts the currently selected simulation. If the PHOTOSS option “Save automatically when
starting a simulation” is activated, any changes made to the active simulation setup with PScript or
PHOTOSS will be saved, overwriting the old *pho-file. Only one simulation can be run at a time. If the
simulation consists of a parameter variation, only the current values of the simulation parameters (and
its placeholders) will be used and the simulation is carried out only once. If you want to execute the full
parameter variation, use the function getParameterVariationScript() described on page 16.7 instead.

41

Function: simulationObject.save()

Code: mySimulation.save()

Description: Saves the currently selected simulation (object). If the simulation file already exists, it will
be overwritten without prompting a request.

Function: simulationObject.saveAs(string fileName)

Code: mySimulation.saveAs("MyNewSimulation.pho")

Description: Saves the currently selected simulation under the given filename. If the simulation file
already exists, it will be overwritten without prompting a request.

42

16.6 Functions concerning the component class:

All functions of the PScript component class have to be called on a component object which can be
obtained by using comp = sim.getComponent() as described on page 41. Also keep in mind that you can
always call “combined” functions like myVal = simulationObject.ComponentObject.getName(), you do not have
to save the component to a component object in order to call the following functions. All relevant
functions are listed in table 5 and explained in more detail below.

Table 5. Overview of Component-Related Functions

Function Name Short description Page
sim.createComponent() creates a new component on the grid 43
sim.createAndConnectComponent() creates a new component on the grid and connects it 44
sim.getComponent() returns the component object 41
comp.deleteComponent() deletes the component 44
comp.getBypass() returns whether the component is bypassed 44
comp.getComponentType() returns the component type 44
comp.getGridCoordinates() returns grid coordinates of current component 44
comp.getIterationResultValues() return Results of an iterator 44
comp.getName() returns the name of the component 45
comp.getParameter() returns the parameter object for specified parameter 45
comp.getParameterDescription() returns the description for specified parameter 45
comp.getParameterNames() returns names of all component parameters 45
comp.getParameters() returns parameter object of all component parame-

ters
45

comp.getParameterUnit() returns unit of specified parameter 45
comp.getParameterValue() returns the value of specified parameter 45
comp.getParameterValues() returns the values of all parameters 46
comp.getPMDPath() is the current component is a PMD path member? 46
comp.getResult() returns a result object of the specified result 46
comp.getResultNames() returns the names of all component results 46
comp.getResults() returns all result component result objects 46
comp.getResultUnit() returns unit of specified result 46
comp.getResultUnits() returns units of all component results 46
comp.getResultValue() returns the value of the specified result 46
comp.getResultValues() returns the values of all component results 46
comp.isComponentOfType() returns whether the component is of specified type 46
comp.isIterator() returns whether the component is of type iterator 47
comp.isNetwork() returns whether the component is of type network 47
comp.listParameters() lists all parameters of the component 47
comp.listResults() lists all results of the component 47
comp.setBypass() set the bypass of the component 47
comp.setName() changes the name of the component 47
comp.setParameterValue() sets the value of specified component parameter 47
comp.setPMDPath() sets PMD path membership of the component 47

Functions:
simObject.createComponent(string compType, int xCoordinate, int yCoordinate)

simObject.createComponent(string compType, int xCoordinate, int yCoordinate, string compName)

Code: mySimulationObject.createComponent("Single Mode Fiber", 5,6)

Code: mySimulationObject.createComponent("Single Mode Fiber", 5,6, "myNewFiber")

Description: Creates a new component of the type specified in the string componentType at the given x-
and y-coordinates. Optionally, you may also specify the name of the new component. If you do not
specify a name, PHOTOSS will automatically determine the next available component name by using
its default notation and increasing the numeral suffix by one if necessary. Trying to specify a component

43

type which is not defined or specifying a name which is already in use will issue an error.

Functions:
simObject.createAndConnectComponent(string oldCompName, string newCompType)

simObject.createAndConnectComponent(string oldCompName, string newCompType, string newCompName)

simObject.createAndConnectComponent(string oldCompName, int baseOutPort, string newCompType, int newInPort)

simObject.createAndConnectComponent(string oldCompName, int baseOutPort, string newCompType, int newInPort,

string newCompName)

Code: mySimulationObject.createAndConnectComponent(s.pulseGen,"Single Mode Fiber")

Code: mySimulationObject.createAndConnectComponent(s.pulseGen,0, "Single Mode Fiber", 0 "newSMF")

Description: This function creates a new component of the specified type on the grid and automatically
connects it to the specified “old” component with the name oldCompName. You can also specify which
Out-Port of the old component should be connected to which In-Port of the new component. If you
do not specify the ports, the first free Out-Port of the old component will be connected with the first
In-Port of the newly created component. You can also optionally specify a name for the new component.
Thew new component will be placed to grid coordinates to the right of the existing component, if the
space is unoccupied. If it is already occupied, PHOTOSS will try to find a free space near to the existing
component.

Function: componentObject.deleteComponent()

Code: myComponentObject.deleteComponent()

Description: Deletes the component object on which the function is called. The component (and its
parameters and results) will be completely removed from the simulation. The function can also be called
on a simulation object and it will delete the component given by the supplied componentNameString. Trying
to delete non-existing components will issue an error.

Function: bool componentObject.getBypass()

Code: smfBypass = smf.getBypass()

Description: Returns a bool value which specifies if the currently selected component is bypassed (true)
or not (false). The default is false.

Function: string componentObject.getComponentType()

Code: myCompType = s.iterator.getComponentType()

Alternative Code: myCompType = myCompObject.getComponentType()

Description: Returns a string which contains the type of the given component object. Please note that
the type of a component might not be related to its name (since you can assign your own names to
any PHOTOSS component). The component type can never be changed; e.g. a “Pulse Generator” will
always be a “Pulse Generator”, regardless of its name.

Functions:
string componentObject.getGridCoordinates()

string componentObject.getGridCoordinates(string dimensionString)

Code: coordVector = sim.smf.getGridCoordinates()

Code: xCoord = sim.smf.getGridCoordinates("x")

Description: Returns a vector containing the x- and y-coordinates of the specified component. If used
on a component which resides inside a network or an iterator, the coordinates inside the network are
returned. If you specify a dimension (may be either "x" or "y") the function will return the coordinate
for the specified dimension only.

Function: double[] iteratorComponent.componentObject.getIterationResultValues("resName")

Code:

1 valVec = mySimulation.iterator1.SMF.getIterationResultValues("DGD") // Returns a vector

containing all results with the name "DGD" in the component named "SMF" in the

iterator "iterator1 ".

2 allValsVec = mySimulation.iterator1.SMF.getIterationResultValues () // Returns a vector

containing all results of the component "SMF" inside the specified iterator component

named "iterator1 ".

44

Description: The function returns a vector of all results or all specified results which are included in
a given component which resides in an iterator component. If, for example, the iterator contains four
iteration runs, each specified result name will result in a return vector of the length four (one for each
iteration). If no result name is specified, all results of the specified component will returned. In this
case, all results of the first iteration are sorted in descending order. The results of further iterations are
sorted in the same manner. Please keep in mind that you need to check the appropriate radio boxes of
all results of your component(s) you wish to receive (of course, you can alternatively use PScript to set
the component parameters on the “results” tab, e.g. s.smf.setParameterValue("DGD_derivation", true))

Function: string componentObject.getName()

Code: myComponentName = mySimObject.analyticalFilter1.getName()

Alternative Code: myComponentName = myComponentObject.getName()

Description: Returns a string containing the name of the specified component. You will find that this
function can be useful when iterating over a vector of multiple component objects:
compName= componentVec[i].getName()

Function: parameterObject componentObject.getParameter(string parameterName)

Code: smfLength = mySimObject.smf.getParameter("length")

Alternative Code: parameterObj = componentObject.getParameter("length")

Description: Returns the specified parameter object of the specified component. If the specified parameter
does not exist in the currently active component, an exception will be thrown. Please note that the
parameter object is not the value of the parameter but an object containing the value, the name and the
unit of the parameter. If you want to access the value of the parameter, use the getValue()-function on
the parameter object or use the function getParameterValue() to directly access its value.

Function: string componentObject.getParameterDescription(string parameterNameString)

Code: myDesc = mySimObject.smf.getParameterDescription("DeltaBeta_1")

Description: Returns the description string of the given parameter. This is the same description which
is also shown in the GUI when you open the component parameter dialog and click on the appropriate
parameter.

Function: string[] componentObject.getParameterNames()

Code: nameVec = mySimObject.smf.getParameterNames()

Alternative Code: nameVec = myComponentObject.getParameterNames()

Description: Returns a vector containing the names of all parameters of the specified component or
component object.

Function: parameterObject[] componentObject.getParameters()

Code: parObjVec = simulationObject.smf.getParameters()

Alternative Code: parObjVec = componentObject.getParameters()

Description: Returns a vector containing all parameter objects of the specified component. Please note
that the parameter objects are not the values of the parameters but objects containing the values, the
names and the units of the parameters. If you want to directly access the value of the parameters, use
the function getParameterValues().

Function: string componentObject.getParameterUnit(string parameterName)

Code: parUni = mySimObject.smf.getParameterUnit("length")

Description: Returns a string containing the unit of the specified parameter. If the parameter does not
have a unit, an empty string is returned.

Function: string[] componentObject.getParameterUnits()

Code: parUniVec = simulationObject.smf.getParameterUnits()

Alternative Code: parUniVec = componentObject.getParameterUnits()

Description: Returns a string vector containing the units of all parameters of the specified component
(object). If one of the parameters does not contain a unit, the associated vector entry will be empty.

Function: double /string componentObject.getParameterValue(string parameterName)

Code: length = mySimObject.smf.getParameterValue("length")

Alternative Code: length = componentObject.getParameterValue("length")

Description: Returns a double or string value of the specified parameter for a given component (object

45

Function: double[] /string[] componentObject.getParameterValues()

Code: parVals = mySimObject.smf.getParameterValues()

Alternative Code: parVales = componentObject.getParameterValues()

Description: Returns the double or string vector with the values of all parameters for a given component
(object).

Function: bool getPMDPath()

Code: smfIsPMDMember = mySimObject.smf.getPMDPath()

Description: Returns a bool value which specifies if the currently selected component is a PMD Path
Member (true) or not (false). The Default is false.

Function: resultObject componentObject.getResult(string resultName)

Code: resObj = mySimObject.smf.getResult("DGD")

Alternative Code: resObj = componentObject.getResult("DGD")

Description: Returns a result object of the specified result of the given component (object). Please note,
that the result object contains the name, value and unit of the specified result. If you want to access the
result value, please use resObj.getValue() or the function .getResultValue() if you want to directly access
the value.

Function: string[] componentObject.getResultNames()

Code: resNamesVec = mySimObject.smf.getResultNames()

Alternative Code: resNamesVec = componentObject.getResultNames()

Description: Returns a string vector containing the names of all results of the specified component
(object).

Function: resultObject[] componentObject.getResults()

Code: resObjVec = mySimObject.smf.getResults()

Alternative Code: resObjVec = componentObject.getResults()

Description: Returns a vector containing the result objects all results of the specified component (object).
Please note, that the elements of the result object vector contains the result objects (including their name,
value and unit). If you want to access the result values, please use resObjVec[i].getValue() or the function
.getResultValues() if you want to directly access the values

Function: string componentObject.getResultUnit(string resultName)

Code: resUnit = mySimObject.smf.getResultUnit("DGD")

Alternative Code: resUnit = componentObject.getResultUnit("DGD")

Description: Returns a string containing the unit of the specified result of the given component (object).
If the result does not have a unit, an empty string is returned.

Function: string[] componentObject.getResultUnits()

Code: resUnitVec = mySimObject.smf.getResultUnits()

Alternative Code: resUnitVec = componentObject.getResultUnits()

Description: Returns a string vector containing the units of all results of the given component (object).
If one of the results does not contain a unit, the associated vector entry will be empty.

Function: double componentObject.getResultValue(string resultName)

Code: resVal = mySimObject.smf.getResultValue("DGD")

Alternative Code: resVal = componentObject.getResultValue("DGD")

Description: Returns the value of the specified result of the given component (object).

Function: double[] componentObject.getResultValues()

Code: resValVec = mySimObject.smf.getResultValues()

Alternative Code: resValVec = componentObject.getResultValues()

Description: Returns the a vector containing the values of all results of the given component (object).

Function: bool componentObject.isComponentOfType(string componentTypeName)

Code: myBool = mySimulationObject.myComponent.isComponentOfType("Pulse Generator")

Alternative Code: myBool = myComponentObject.isComponentOfType("Pulse Generator")

Description: Returns, whether the given component is of the type which has been specified in the
componentTypeName string (true) or not (false).

46

Function: bool componentObject.isIterator()

Code: compIsIterator = myCompObject.isIterator()

Alternative Code: compIsIterator = mySimObject.myParamObject.isIterator()

Description: Returns a bool value that specifies if the given component (object) is of the type iterator.

Function: bool componentObject.isNetwork()

Code: compIsNetwork = myCompObject.isNetwork()

Alternative Code: compIsNetwork = mySimObject.myParamObject.isNetwork()

Description: Returns a bool value that specifies if the given component (object) is of the type network.

Function: componentObject.listParameters()

Code: myComponentObject.listParameters()

Description: Displays an overview of all parameters of the given component (object) in the PScript
console. The information includes the parameter names, values and units (if they exist).

Function: componentObject.listResults()

Code: myComponentObject.listResults()

Description: Displays an overview of all results of the given component (object) in the PScript console.
The information includes the result names, values and units (if they exist).

Function: componentObject.setBypass(bool bypassBool)

Code: myComponentObject.setBypass(true)

Description: Sets the bypass property of the given component. If set to true, the component will be
bypassed. Keep in mind that some PHOTOSS components cannot be bypassed (e.g. the pulse generator).
If you attempt to bypass such a component, PScript will throw an exception.

Function: componentObject.setName(string componentNameString)

Code: myComponentObject.setName("PulseGenerator75")

Description: Sets the name of the component object on which the function is invoked to the given name
string. If the name you have specified is already in use by other components on the PHOTOSS grid, the
component you have selected will receive a warning and a suffix will be added to the component name to
ensure it is unique. The suffix will contain the first available number. E.g. if you already have a component
named “PulseGenerator” and invoke myPG.setName("PulseGenrator"), the name “PulseGenerator0” will be
set. If the name “PulseGenerator0” is also already in use, the number at the end of the name string will
be increased until a unique name has been found.

Function: componentObject.setParameterValue(string parName, double parValue)

Code: smf.setParameterValue("length", 100)

Description: Assign the value parValue to the parameter with the name “parName” of the given component
(object). The given value may be a bool, a string, a double or an integer value. If you try to assign a
value to a parameter which doesn’t exist, PScript will throw an exception. Setting a parameter which is
not accepted by the component (for example, setting a negative length for the length of a SSMF) will
trigger the same response a component will give you when you try to enter the parameter value in the
GUI. In most cases, the user-specified value will be rejected and the parameter will be reset to the last
valid value.

Function: componentObject.setPMDPath(bool pathmember)

Code: smf.setPMDPath(true)

Description: Sets the PMD Path Membership of the given component object. If set to true, the component
is a PMD Path Member. Keep in mind that some PHOTOSS components cannot be PMD Path members
(e.g. the Analytical BERT). If you attempt to assign a PMD Path Membership to such a component,
PScript will throw a warning.

47

16.7 Functions concerning the simulation parameter class:

In this subsection, all functions concerning the simulation parameter class are listed (see table 5). Please
note that since release version 5.90 of PHOTOSS the simulation parameters cover the full functionality
of the legacy construct “global variables” which is discontinued (refer to section 16.9 on page 55 for more
information). Some of the functions described in table 5 can only be called on a simulation parameter
object. You can obtain it by using mySimParam = sim.getSimulationParameter().

PHOTOSS distinguishes between the built-in simulation parameters (which can also be accessed via
their GUI dialog) and custom simulation parameters which may be defined by the user. Both types of
simulation parameters are combined in the (general) “simulation parameters”. However, dedicated access
of either the built-in or custom parameters is possible (see below).

The built-in simulation parameters may not be deleted but they may be changed (according to their
allowed parameter range) and may be used in a parameter variation. Custom simulation parameters may
be created, deleted and modified to your liking. For a more detailed explanation on the inner workings
of the PHOTOSS simulation parameters, parameter variations and the usage of automatically generated
PScripts please refer to the PHOTOSS manual!

Please keep in mind, that a simulation parameter always has a current value. If it is part of a
parameter variation, the current value successively assumes all values inside the variation vector.

Table 6. Overview of Simulation Parameter-Related Functions

Function Name Short description Page
simParam.getValue() returns the current value of the sim param object 49
simParam.setValue() returns the current value of the sim param object 49
simParam.getUnit() returns the unit of the sim param object 49
simParam.setUnit() sets the unit of the sim param object 50
simParam.getName() returns the name of the sim param 50
simParam.setName() sets the name of the custom sim param 50
simParam.isVariation() returns, whether the sim param object is part of a

parameter variation
50

simParam.isBuiltIn() returns, whether the sim param object is a built-in
sim param

50

simParam.getVariationVector() returns the variation vector of the sim param object 50
simParam.setVariationVector() sets the variation vector of the sim param object 50

48

Table 7. Overview of Simulation Parameter-Related Functions (continued)

Function Name Short description Page
sim.listSimulationParameters() lists all sim params (custom, built-in and derived) 50
sim.listBuiltInSimulationParameters() lists all built-in sim params 50
sim.listCustomSimulationParameters() lists all custom sim params 50
sim.listDerivedSimulationParameters() lists all derived sim params 51

sim.createSimulationParameter() create a custom sim param 51
sim.deleteSimulationParameter() deletes a custom sim param 51
sim.getSimulationParameter() returns a sim param object for a (general) sim param 51
sim.getSimulationParameters() returns a sim param object vector of all (general) sim

params
51

sim.setSimulationParameterName() resets the name of the specified sim param 51
sim.getSimulationParameterValue() returns the current value of the given sim param 51
sim.setSimulationParameterValue() sets the current value of the given sim param 51
sim.getSimulationParameterValues() returns all current values of all sim param 51
sim.getSimulationParameterUnit() returns the unit of the given sim param 51
sim.setSimulationParameterUnit() sets the unit of the given custom sim param 52
sim.getSimulationParameterIsVariation() returns whether the sim param is part of a parameter

variation
52

sim.getSimulationParameterVariationVector() returns the variation vector of the given sim param 52
sim.setSimulationParameterVariationVector() sets the variation vector of the given sim param 52
sim.getParameterVariationScript() returns parameter variation script of the simulation 52

sim.getBuiltInSimulationParameter() returns a sim param object for a (built-in) sim param 52
sim.getBuiltInSimulationParameters() returns a sim paramr object vector of all (built in)

sim params
52

sim.getBuiltInSimulationParameterValue() returns the value for a (built-in) sim param 52
sim.getBuiltInSimulationParameterUnit() returns the unit for a (built-in) sim param 52
sim.setBuiltInSimulationParameterValue() sets the value for a (built-in) sim param 53

sim.getCustomSimulationParameter() returns a sim param object for a (custom) sim param 53
sim.getCustomSimulationParameters() returns a sim param object vector of all (custom) sim

params
53

sim.setCustomSimulationParameterName() resets the name of the specified custom sim param 53
sim.getCustomSimulationParameterValue() returns the value for a (custom) sim param 53
sim.getCustomSimulationParameterUnit() returns the unit for a (custom) sim param 53
sim.setCustomSimulationParameterValue() sets the value for a (custom) sim param 53
sim.setCustomSimulationParameterUnit() sets the unit for a (custom) sim param 53

sim.getDerivedSimulationParameterValue() gets the value for a (derived) sim param 53
sim.getDerivedSimulationParameterUnit() gets the unit for a (derived) sim param 53

Function: simulationParameterObject.getValue()

Code: mySimParamObject.getValue()

Description: Identical to getSimulationParameterValue() but must be called directly on the simulation pa-
rameter object (may be both a custom or built-in simulation parameter).

Function: simulationParameterObject.setValue(double paramValue)

Code: mySimParamObject.setValue(5)

Description: Identical to setSimulationParameterValue() but must be called directly on the simulation pa-
rameter object (may be both a custom or built-in simulation parameter).

Function: simulationParameterObject.getUnit

Code: mySimParamObject.getUnit()

Description: Identical to getSimulationParameterUnit() but must be called directly on the simulation pa-
rameter object (may be both a custom or built-in simulation parameter).

49

Function: simulationParameterObject.setUnit(string unitNameString)

Code: mySimParamObject.setUnit("THz")

Description: Identical to setSimulationParameterUnit() but must be called directly on the simulation pa-
rameter object (may only be a custom simulation parameter).

Function: simulationParameterObject.getName()

Code: mySimParamObject.getName()

Description: Returns the name of the simulation parameter object (may be both a custom or built-in
simulation parameter).

Function: simulationParameterObject.setName(string nameString)

Code: mySimParamObject.setName("myParamName")

Description: Sets the name of the simulation parameter object (may only be a custom simulation pa-
rameter). The name must not be occupied by an already existing simulation parameter, otherwise, an
error will be issued. The name must not contain white spaces. Keep in mind that changing the name
of a custom simulation parameter also changes the names of all placeholders you might have put into
any component as parameter. If, e.g. you have a custom simulation parameter called “SMFlength”, you
can also assign it to any parameter of any component, e.g. the parameter “length” of the component
“SMF1”. Now, changing the name from “SMFlength” to (e.g.) “myLength” will cause the placeholder
to assume the name “myLength” as well.

Function: bool simulationParameterObject.isVariation()

Code: myBool = mySimParamObject.isVariation()

Description: Returns if the simulation parameter object (may be both a custom or built-in simulation
parameter) is part of a parameter variation. Works similar to simulationParameterIsVariation() but must
be called directly on a simulation parameter object.

Function: bool simulationParameterObject.isBuiltIn()

Code: myBool = mySimParamObject.isBuiltIn()

Description: Returns if the simulation parameter object (may be both a custom or built-in simulation
parameter) is a built in simulation parameter. Returns false otherwise.

Function: double[] simulationParameterObject.getVariationVector()

Code: myVariationVector = mySimParamObject.getVariationVector()

Description: Identical to getSimulationParameterVariationVector() but must be called directly on a simula-
tion parameter object.

Function: simulationParameterObject.setVariationVector(double[] variationVector)

Code: mySimParamObject.setVariationVector([1, 5, -4, 5.344])

Description: Identical to setSimulationParameterVariationVector() but must be called directly on a simula-
tion parameter object.

Function: simulationObject.listSimulationParameters()

Code: sim.listSimulationParameters()

Description: Lists all simulation parameters (custom, built-in and derived) in the PScript console. Their
names, units and current values are depicted.

Function: simulationObject.listBuiltInSimulationParameters()

Code: sim.listBuiltInSimulationParameters()

Description: Lists all built-in simulation parameters in the PScript console. Their names, units and
current values are depicted.

Function: simulationObject.listCustomSimulationParameters()

Code: sim.listCustomSimulationParameters()

Description: Lists all custom simulation parameters in the PScript console. Their names, units and
current values are depicted. If no custom simulation parameters are defined, no output will be written
to the console window.

50

Function: simulationObject.listDerivedSimulationParameters()

Code: sim.listDerivedSimulationParameters()

Description: Lists all derived simulation parameters in the PScript console. Their names, units and
current values are depicted.

Function: simulationParameterObject simulationObject.createSimulationParameter(string parameterName, double

currentValue)

Code: mySimParam = sim.createSimulationParameter("myParam", 5)

Description: Creates and returns a new simulation parameter with designated name and value. You
can not create simulation parameters which already exist. Trying to do so will issue an error. Built-in
simulation parameters may not be (re-)created, either. The specified name string must not contain white
spaces.

Function: simulationObject.deleteSimulationParameter(string parameterName)

Code: sim.deleteSimulationParameter("mySimParam")

Description: Deletes a custom simulation parameter (if it exists). Trying to delete built-in or non-existent
simulation parameters will issue an error.

Function: simulationParameterObject simulationObject.getSimulationParameter(string parameterName)

Code: myParamObject = sim.getSimulationParameter("testParameter")

Description: Returns the simulation parameter object for the specified (custom and/or built-in) simu-
lation parameter. Specific functions such as (e.g.) getValue() and setValue() can now be called on the
simulation parameter object. Trying to call for a non-existing (general) simulation parameter will cause
an error. Please not that this function can be used to call for both built-in and custom simulation
parameters!
Function: simulationParameterObjectVector simulationObject.getSimulationParameters()

Code: myParamObjectVector = sim.getSimulationParameters()

Description: Returns a vector of all simulation parameter objects for the (general) simulation parameters.
Specific functions such as (e.g.) getValue() and setValue() can now be called each object of the vector.

Function: simulationObject.setSimulationParameterName(string oldParamName, string newParamName)

Code: sim.setSimulationParameterName("myOldParamName", "myNiceNewName")

Description: Resets the value for the specified simulation parameter. Trying to reset a non-custom
simulation parameter or trying to assign a name which is already in use will issue an error. If the
simulation parameter you want to rename is currently used in a formula and/or as placeholder in a
component, all occurrences of the parameter will automatically be renamed as well.

Function: double simulationObject.getSimulationParameterValue(string simParameterName)

Code: parVal = mySimObject.getSimulationParameterValue("f0")

Description: Returns the value of the specified simulation parameter (may be custom, derived or built-in)
of the given simulation.

Function: simulationObject.setSimulationParameterValue(string parName, parValue)

Code: mySimulation.setSimulationParameterValue("ref_bitrate", 40.0)

Description: Sets the specified simulation parameter (may be both custom or built-in) with the name
“parName” to the given current value “parValue” of the given simulation. If the simulation parameter
with the specified name does not exist, an exception will be thrown. If the specified value is not valid, a
warning will be shown and PHOTOSS will use the last valid value for the simulation parameter instead.

Function: double[] simulationObject.getSimulationParameterValues()

Code: simParValVec = mySimObject.getSimulationParameterValues()

Description: Returns a vector containing the values of all simulation parameters (both custom and built-
in) in the given simulation.

Function: string simulationObject.getSimulationParameterUnit(string simParameterName)

Code: parUnit = mySimObject.getSimulationParameterUnit("f0")

Description: Returns a string containing the unit of the specified simulation parameter (may be custom,
derived or built-in) of the given simulation. If the parameter does not have a unit, an empty string is
returned.

51

Function: simulationObject.setSimulationParameterUnit(string parameterNameString, string unitNameString)

Code: mySimObject.setSimulationParameterUnit("myFrequencyParameter", "Thz")

Description: Sets a string defining the unit of the specified simulation parameter of the given simulation.
Works only for custom simulation parameters. Trying to change the unit of a derived or built-in simulation
parameter will issue an error.

Function: bool simulationObject.getSimulationParameterIsVariation(string parameterNameString)

Code: myBool = sim.getSimulationParameterIsVariation("f0")

Description: Returns, whether the given simulation parameter (may be both custom or built-in param-
eter) is part of a parameter variation. Returns true if the variation vector of the specified parameter
contains more than one element.

Function: variationVector[] simulationObject.getSimulationParameterVariationVector(string paramName)

Code: myVec = sim.getSimulationParameterVariationVector("testParam")

Description: Returns the variation vector of the specified simulation parameter (may be both a custom
or built-in simulation parameter). If the parameter is not part of a parameter variation, the vector will
only contain one element. If the parameter is part of a parameter variation, the vector will contain all
values, the parameter will assume during a variation.

Function: simulationObject.setSimulationParameterVariationVector(string paramName, double[] variationVec)

Code: sim.getSimulationParameterVariationVector("testParam", [1,2,5.5, 3.8461, -1 , 5])

Description: Sets the variation vector of the specified simulation parameter (may be both a custom or
built-in simulation parameter). If a vector with more than one element is supplied, the parameter will
automatically count as “is part of a parameter variation” and it will assume all values of the vector you
have supplied.

Function: string simulationObject.getParameterVariationScript()

Code: myScriptString = sim.getParameterVariationScript()

Code: eval(sim.getParameterVariationScript()

Description: Returns the parameter variation script of the current simulation. You can execute the whole
parameter variation by using the eval(yourScript) function but keep in mind that the proper way to carry
out parameter variations is to either use the GUI mode or to copy (and use) the variation script directly
from the GUI.

Function: simulationParameterObject simulationObject.getBuiltInSimulationParameter(string parameterName)

Code: myParamObject = sim.getBuiltInSimulationParameter("f0")

Description: Returns the simulation parameter object for the specified (built-in) simulation parameter.
Specific functions such as (e.g.) getValue() and setValue() can now be called on the simulation parameter
object. Trying to call for a non-existing (built-in) simulation parameter will cause an error. Please not
that this function can not be used to call for custom simulation parameters! Use getSimulationParameter()

or getCustomSimulationParameter() instead!

Function: simulationParameterObject[] simulationObject.getBuiltInSimulationParameters()

Code: myParamObjectVector = sim.getBuiltInSimulationParameters()

Description: Returns a vector of all simulation parameter objects for the (built-in) simulation parameters.
Specific functions such as (e.g.) getValue() and setValue() can now be called each object of the vector.

Function: double simulationObject.getBuiltInSimulationParameterValue(string paramName)

Code: simParVal = mySimObject.getBuiltInSimulationParameterValue("reference_bitrate")

Description: Returns the value of the specified built-in simulation parameter (may be a double, boolean
or string value).

Function: double simulationObject.getBuiltInSimulationParameterUnit(string paramName)

Code: simParVal = mySimObject.getBuiltInSimulationParameterUnit("reference_bitrate")

Description: Returns the unit of the specified built-in simulation parameter. If the speciefied built-in
simulation parameter does not have a unit, an empty string is returned.

52

Function: simulationObject.setBuiltInSimulationParameterValue(string paramName, double paramValue)

Code: mySimObject.setBuiltInSimulationParameterValue("reference_bitrate", 112)

Description: Sets the value of the specified built-in simulation parameter (may be a double, boolean
or string value). If you are trying to set a value which is outside the allowed parameter range of the
specified built-in simulation parameter, PHOTOSS will automatically trigger an error (default) or a
warning, depending on your choices in the PHOTOSS options dialog. It is strongly recommended to use
the default setting and receive an error.

Function: simulationParameterObject simulationObject.getCustomSimulationParameter(string parameterName)

Code: myParamObject = sim.getCustomSimulationParameter("myParameterName")

Description: Returns the simulation parameter object for the specified (custom) simulation parameter.
Specific functions such as (e.g.) getValue() and setValue() can now be called on the simulation parameter
object. Trying to call for a non-existing (custom) simulation parameter will cause an error. Please not
that this function can not be used to call for built-in simulation parameters! Use getSimulationParameter()

or getBuiltInSimulationParameter() instead!

Function: simulationParameterObjectVector simulationObject.getCustomSimulationParameters()

Code: myParamObjectVector = sim.getSimulationCustomParameters()

Description: Returns a vector of all simulation parameter objects for the (custom) simulation parameters.
Specific functions such as (e.g.) getValue() and setValue() can now be called each object of the vector. If
no custom simulation parameters exist, an empty vector will be returned.

Function: simulationObject.setCustomSimulationParameterName(string oldParamName, string newParamName)

Code: sim.setCustomSimulationParameterName("myOldParamName", "myNiceNewName")

Description: Resets the value for the specified custom simulation parameter. Trying to reset a non-
custom simulation parameter or trying to assign a name which is already in use will issue an error. If
the simulation parameter you want to rename is currently used in a formula and/or as placeholder in a
component, all occurrences of the parameter will automatically be renamed as well.

Function: double simulationObject.getCustomSimulationParameterValue(string paramName)

Code: simParVal = mySimObject.getCustomSimulationParameterValue("myParam")

Description: Returns the value of the specified custom simulation parameter (may be a double, boolean
or string value).

Function: string simulationObject.getCustomSimulationParameterUnit(string paramName)

Code: simParUnit = mySimObject.getCustomSimulationParameterUnit("myParam")

Description: Returns the unit of the specified custom simulation parameter. If the speciefied custom
simulation parameter does not have a unit, an empty string is returned.

Function: simulationObject.setCustomSimulationParameterValue(string paramName, double paramValue)

Code: mySimObject.setCustomSimulationParameterValue("myParam", 5)

Description: Sets the value of the specified custom simulation parameter.

Function: simulationObject.setCustomSimulationParameterUnit(string paramName, string paramUnit)

Code: mySimObject.setCustomSimulationParameterUnit("myParam", "GHz")

Description: Sets the unit of the specified custom simulation parameter.

Function: double simulationObject.getDerivedSimulationParameterValue(string paramName)

Code: simParVal = mySimObject.getDerivedSimulationParameterValue("frequencyRange")

Description: Returns the value of the specified derived simulation parameter (may be a double, boolean
or string value).

Function: string simulationObject.getDerivedSimulationParameterUnit(string paramName)

Code: simParUnit = mySimObject.getDerivedSimulationParameterUnit("myParam")

Description: Returns the unit of the specified derived simulation parameter. If the speciefied derived
simulation parameter does not have a unit, an empty string is returned.

53

16.8 Functions concerning the result class:

The functions which may be called on a result object are listed in table 8. To obtain a result object, you
may use getResult() on a component object. All functions are explained in more detail below. Obviously,
results are read-only; their units can not be changed either.

Table 8. Overview of Result-Related Functions

Function Name Short description Page
component.getResult() returns the result object of the given result name 46

result.getValue() sets the unit of the simulation parameter object 54
result.getUnit() returns the name of the simulation parameter 54

Function: double resultObject.getValue()

Code: myDouble = resObj.getValue()

Description: Identical to getResultValue() but must be called directly on a result object.

Function: string resultObjekt.getUnit()

Code: myUnitName = resObj.getUnit()

Description: Identical to getResultUnit() but must be called directly on a result object.

54

16.9 Functions concerning the global variables:

Since the PHOTOSS release version 5.90 “Global Variables” are no longer required. All the functionality
which was previously offered by using global variables is now handled by (custom) simulation parameters.
Please refer to section 16.7 on page 48 for all functions concerning simulation parameters. When opening
old .pho files, the old global variables will automatically be converted to (custom) simulation parameters.

The functions listed in table 9 are no longer supported and have been replaced by their simulation
parameter counterparts. If you still have old scripts which call these functions, their new counterparts
will automatically be called and a warning will be issued to inform you that the usage of the obsolete
functions is discouraged.

Table 9. Overview of Obsolete Functions

Obsolete Function Name New Function Pendant Page
sim.getGlobalVariable() sim.getSimulationParameter() 51
sim.getGlobalVariables() sim.getSimulationParameters() 51
sim.setGlobalVariableValue() sim.setSimulationParameterValue() 51
sim.getGlobalVariableValue() sim.getSimulationParameterValue() 51
sim.getGlobalVariableUnit() sim.getSimulationParameterUnit() 51
sim.listGlobalVariables() sim.listSimulationParameters() 50
sim.isGlobalVariableOfTypeVariation() sim.getSimulationParameterIsVariation() 52

55

16.10 Functions concerning linking and unlinking of components

Table 10. Overview of Functions concerning Linking / Unlinking

Function Name Short description Page
sim.linkComponents() links the specified components 56
comp.getInPortLinks() returns all components, which are connected to the

specified In-Port
56

comp.getOutPortLinks() returns all components, which are connected to the
specified Out-Port

56

sim.isInPortLinked() returns, whether the specified In-Port is linked 56
sim.isOutPortLinked() returns, whether the specified Out-Port is linked 57
comp.isLinked() returns, whether the component is linked 57
comp.isLinkedTo() returns, whether the component is linked to another

component
57

comp.getLinkPorts() returns the In- and Out-Port through which two
components are linked

57

sim.unlinkComponents() unlink the specified components 57

Functions: simulationObject.linkComponents(leftCompObj,int outPortNo ,rightCompObj, int inPortNo)

simulationObject.linkComponents(leftCompObj,rightCompObj)

Code: s.linkComponents(s.pulseGenerator, 0, s.coupler, 1))

Description: You link together two components in PScript using this function. leftCompObj is the compo-
nent object on the left hand side. You can optionally specify the number of its Out-Port and the number
of the In-Port of the component object on the right hand side (rightCompObj). Keep in mind that the
In-Ports and the Out-Ports are counted 0-based (beginning with 0 for the first port). If you omit the
In-Port and Out-Port numbers, PScript will connect the first Out-Port of the left hand side component
object to the first free In-Port of the right hand side component object. If the component on the right
side has no free In-Ports or no In-Ports at all, PScriptwill issue an error. PScript will generally issue an
error if you try to access non-existent ports or if you try to connect port types which are not compatible
(e.g. an electrical to an optical port). Keep in mind, that PHOTOSS components generally may have
only one component connected to their In-Port but it is always possible to connect multiple components
to a single Out-Port. Please also keep in mind that you can only link components which reside on the
same network-level (e.g. “on top” or in the same sub-network or iterator).

Function: componentObject.getInPortLinks(int portNumber)

Code: compVector = s.smf.getInPortLinks(0))

Description: Returns a vector which holds all components which are connected to the specified In-Port
of the component on which this function is called. Normally, the vector should not return more than one
component, since In-Ports may only have one connection. If you specify a non-existing In-Port number
(remember that the In-Ports are counted zero-based), you will receive an error. If the specified In-Port
is currently not connected, you will receive an empty vector of length 0.

Function: componentObject.getOutPortLinks(int portNumber)

Code: compVector = s.smf.getOutPortLinks(0))

Description: Returns a vector which holds all components which are connected to the specified Out-
Port of the component on which this function is called. If you specify a non-existing Out-Port number
(remember that the Out-Ports are counted zero-based), you will receive an error. If the specified Out-Port
is currently not connected, you will receive an empty vector of length 0.

Functions: simulationObject.isInPortLinked(compObj,int inPortNo)

componentObject.isInPortLinked(int inPortNo)

Code: s.isInPortLinked(s.smf, 0))

Code: s.smf.isInPortLinked(0))

Description: This function returns, whether the specified In-Port of the current (or specified) component
is currently linked. The function may either be called on a component object or a simulation object.

56

If you try to address a port which does not exist, you will receive an error. Remember that ports are
counted zero-based.

Functions: simulationObject.isOutPortLinked(compObj,int outPortNo)

componentObject.isOutPortLinked(int outPortNo)

Code: s.isOutPortLinked(s.smf, 0))

Code: s.smf.isOutPortLinked(0))

Description: This function returns, whether the specified Out-Port of the current (or specified) component
is currently linked. The function may either be called on a component object or a simulation object.
If you try to address a port which does not exist, you will receive an error. Remember that ports are
counted zero-based.

Function: componentObject.isLinked()

Code: s.smf.isLinked())

Description: This function returns, whether the specified component is linked. The link may be connected
to an In-Port, an Out-Port or even both.

Function: componentObject.isLinkedTo(compObj otherComponent)

Code: s.smf.isLinkedTo(s.pulseGenerator))

Description: This function returns, whether the current component is linked to the specified component.
If the function returns true, the components may be connected either from one of the source component’s
Out-Port to one of the destination component’s In-Port or from one of the destination component’s Out-
Ports to one of the the source component’s In-Ports. Trying to address non-existing components will
issue an error.

Functions: simulationObject.getLinkPorts(compObj firstComp,compObj secondComp)

componentObject.getLinkPorts(compObj secondComp

Code: s.getLinkPorts(s.smf, s.analyticalFilter))

Code: s.smf.getLinkPorts(s.analyticalFilter))

Description: If the two specified components are linked together in such a way, that (at least) one of the
first component’s Out-Ports is connected to (at least) one of the second component’s In-Ports (not vice
versa!) you will receive an array containing the designated Out-Port of the first component (entry 0) and
the designated In-Port of the second component (entry 1). If the specified components are not linked,
you will receive an empty array (length 0). If the specified components are linked through multiple ports,
the array will contain the ports for the first link.

Function: simulationObject.unlinkComponents(componentObject left, int outPortLeft, componentObject right,

int inPortRight)

Code: s.unlinkComponents(s.SMF, 1, s.Coupler, 2)

s.unlinkComponents(s.SMF, s.Coupler)

Description: Removes a link between two PHOTOSS components. Trying to remove a link of components
which are not linked together will produce a warning. If you do not specify the Outport and the Inport
of the components, the first link between the two components which exists will be removed. Please note
that some components may be connected through more than one link - only the first one will be removed!

57

16.11 PScript MATLAB R© specific functions

A list of a all MATLAB R© specific functions of PScript is shown in table 11. All functions are exlpained
in more detail below. Please ensure that you have properly installed a compatible version of MATLAB R©
(you can verify this by using matlab.isAvailable() before calling these functions.

Table 11. Overview of MATLAB R©-related Functions

Function Name Short description Page
object.toMatlab() transfers the object to the MATLAB R© workspace 58
matlab.getBreakOnMatlabErrors() returns whether PScript should halt on MATLAB R© errors 58
matlab.setBreakOnMatlabErrors() sets whether PScript should halt on MATLAB R© errors 58
matlab.getCheckForMatlabErrors() returns whether PScript should look for MATLAB R© errors 58
matlab.setCheckForMatlabErrors() sets whether PScript should look for MATLAB R© errors 58
matlab.eval() evaluate the given expression using MATLAB R© 59
matlab.getLastError() returns the last error in the MATLAB R© workspace 59
matlab.getLastWarning() returns the last warning in the MATLAB R© workspace 59
matlab.getMatlabTimeoutInSeconds() returns the MATLAB R© timeout in seconds 59
matlab.setMatlabTimeoutInSeconds() sets the MATLAB R© timeout in seconds 59
matlab.getValue() retrieves a value from the MATLAB R© workspace to the

PScript workspace
59

matlab.setValue() copies a value from the PScript workspace to the
MATLAB R© workspace

59

matlab.isAvailable() checks whether MATLAB R© is available 59
matlab.getUseIdenticalMatlab

WorkspaceForPHOTOSSAndPScript()

returns whether PHOTOSS MATLAB R© and PScript
workspaces are treated as separate

59

matlab.setUseIdenticalMatlab

WorkspaceForPHOTOSSAndPScript()

sets whether PHOTOSS MATLAB R© and PScript
workspaces are treated as separate

59

matlab.who() lists all objects contained in the matlab object 33

Function: .toMatlab(string variableNameString)

Code: s.SMF.getResult("All lines, Q").toMatlab("myQResult")

Description: Directly transfer a PHOTOSS result to the MATLAB R© workspace. The variable will be
named after the given variableNameString in the function call. If you do not specify a name string, the
variable will have the same name as the PHOTOSS result. Be advised that not specifying a unique result
name string may cause older MATLAB R© variables to be overwritten!

Functions: matlab.setBreakOnMatlabErrors(bool breakBool)

bool matlab.getBreakOnMatlabErrors()

Code set: matlab.setBreakOnMatlabErrors(true)

Code get: myBool = matlab.getBreakOnMatlabErrors()

Description: If set to true, errors which occur during the execution of a MATLAB R© script will result
in a PScript error which will abort the currently running PScript. If set to false, the currently running
MATLAB R© script will be aborted but the currently running PScript will be resumed. Disabling this
option is not recommended.

Functions: matlab.setCheckForMatlabErrors(bool checkBool)

bool matlab.getCheckForMatlabErrors()

Code set: matlab.setCheckForMatlabErrors(true)

Code get: myBool = matlab.getCheckForMatlabErrors()

Description: If set to true, errors and warnings which occur during the execution of a MATLAB R© script
will also automatically be shown in the PScript console. If set to false, the errors will not be shown. This
means, that a running PScript will never be aborted even if MATLAB R© errors will occur. Disabling this
option is not recommended.

58

Function: matlab.eval(string command)

Code: matlab.eval("alpha = 10.334")

Description: Sends a string command to the MATLAB R© workspace and evaluates it. Any valid code in
MATLAB R© can be sent. This includes the execution of functions, scripts, etc. If no PScript MATLAB R©
workspace is currently opened, PScript will open a new workspace (this may take a few seconds, depending
on your machine, so please be patient).

Function: string matlab.getLastError()

Code: mystring = matlab.getLastError()

Description: Copies the last error which occurred in the MATLAB R© workspace to a string variable. If
no error has occurred, it will return an empty string.

Function: string matlab.getLastWarning()

Code: mystring = matlab.getLastWarning()

Description: Copies the last warning which occurred in the MATLAB R© workspace to a string. If no
warning has occurred, it will return an empty string.

Functions: matlab.setMatlabTimeoutInSeconds(int setInt)

int matlab.getMatlabTimeoutInSeconds()

Code set: matlab.setMatlabTimeoutInSeconds(600)

Code get: timeOut = matlab.getMatlabTimeoutInSeconds()

Description: Sets the Matlab Timeout in seconds to the specified integer value. Please refer to the PScript
Settings chapter for more details.

Function: double matlab.getValue(string valName, matlab. dataType)

Code: mydouble = matlab.getValue("alpha", matlab.DOUBLE)

Description: Transfers an already existing variable of the MATLAB R© workspace to a specified PScript
variable. Currently supported data types are:
matlab.DOUBLE, matlab.DBLARRAY, matlab.DBLMATRIX, matlab.COMPLEX, matlab.CPLXMATRIX, matlab.STRING,

matlab.BOOL

Function: bool matlab.isAvailable()

Code: isMatlabAvailable = matlab.isAvailable()

Description: Returns a bool value which specifies if MATLAB R© is available (true) or not (false). Please
keep in mind that PScript supports the same MATLAB R© versions as PHOTOSS. Make sure that your
currently selected MATLAB R© version is supported by both PHOTOSS and PScript.

Function: bool setValue(string parName, parValue)

Code: matlab.setValue("alpha", 10.334)

Description: Assigns the specified value with the name “parValue” (double, float, int, bool, string) to
a variable named “parName” in the MATLAB R© workspace. If the variable already exists, it will be
overwritten; if not, it will be created. If no PScript MATLAB R© workspace is currently opened, PScript
will open a new workspace which may take a few seconds. The function will return true if the string has
been successfully sent to MATLAB R©; this return value will not denote whether the assignment operation
in MATLAB R© has been successful, however.

Functions: bool matlab.setUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript(bool useBool)

Code set: matlab.setUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript(true)

Code get: myBool = matlab.getUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript()

Description: Determines whether the PScript MATLAB R© workspace and the PHOTOSS MATLAB R©
component workspace are identical. Please refer to the PScript Settings chapter for more details. The
default value is true.

59

17 Basic JavaScript Mathematical Function Reference

In this chapter we will list a few of the most common mathematical functions of JavaScript. Be advised
that the following list is not complete. For a complete reference please refer to [JAVASCRIPT], 18.

• Code Sample: Math.abs(my_argument)

Description: Returns the absolute value of the argument.

• Code Sample: Math.acos(my_argument)

Description: Returns the arcos of the input argument.

• Code Sample: Math.asin(my_argument)

Description: Returns the arcsin of the input argument.

• Code Sample: Math.atan(my_argument)

Description: Returns the arctan of the input argument.

• Code Sample: Math.ceil(my_argument)

Description: Round argument to the next upper integer value.

• Code Sample: Math.cos(my_argument)

Description: Returns the cosine of the input argument.

• Code Sample: Math.exp(my_argument)

Description: Returns exp(argument).

• Code Sample: Math.floor(my_argument)

Description: Round argument to the lower integer value.

• Code Sample: Math.log(my_argument)

Description: Returns the natural logarithm of the argument.

• Code Sample: Math.max(x,y)

Description: Returns the maximum value of [x,y]

• Code Sample: Math.min(x,y)

Description: Returns the minimum value of [x,y]

• Code Sample: Math.pow(x,y)

Description Returns the yth power of x.

• Code Sample: Math.round(my_argument)

Description: Rounds to the next integer value

• Code Sample: Math.sin(my_argument)

Description: Returns the sine of the input argument.

• Code Sample: Math.sqrt(my_argument)

Description: Returns the square root of the input argument.

• Code Sample: Math.tan(my_argument)

Description: Returns the tangens of the input argument.

60

18 External References

The following references might be useful when concerning editing, PScript, JavaScript, Qt Script, etc.
These are external Internet references - the author of this manual is not responsible for the contents of
the following websites.

• JAVASCRIPT: Core JavaScript Reference including JavaScript objects, methods, properties, state-
ments, and many more helpful listings: http://www.webreference.com/programming/javascript/

• MATH: Core Java Script Reference concerning the Math object and its methods:
http://www.webreference.com/javascript/reference/core ref/math.html

61

http://www.webreference.com/programming/javascript/
http://www.webreference.com/javascript/reference/core_ref/math.html

Index
MATLAB R© specific functions, 58

abs(), 60
Acknowledgments, 4
acos(), 60
addAutoInclude(), 27
addIncludePath(), 26
appendStringToFile(), 36
application class, 36
application.close(), 36
application.closeSimulations(), 36
asin(), 60
atan(), 60
autoIncludesContain(), 27

ceil(), 60
Chapter

Basic Functionality of PScript, 10, 11
Basic JavaScript Mathematical Function Reference, 60
External References, 61
PScript and MATLAB R©, 19
PScript Code Samples, 30
PScript Console Main Window, 20
PScript Console Menu Functionalit, 21
PScript Conventions, 12, 14
PScript Demo Walkthrough, 15
PScript Function Reference, 31–59
PScript Settings Dialog, 22–27
PScript Syntax Highlighting and Code Assistant, 29
Quickstart Guide, 16–18
What is PScript?, 5, 6

clear(), 40
clearCommandHistory(), 25
clearWorkspace(), 32
close, see application.close(), see application.closeSimulations(),

see simulationObject.close()
collectGarbage(), 32
component class, 43
component object, 13
containsComponent(), 40
copyFromTo(), 37
Copyright Information, 4
cos(), 60
createAndConnectComponent(), 44
createComponent(), 43
createDirectory(), 37
createSimulationParameter(), 51

deleteAllComponents(), 41
deleteComponent(), 41, 44
deleteDirectory(), 37
deleteFile(), 37
deleteFileType(), 37
deleteSimulationParameter(), 51
doesFileExist(), 37

eval(), 59
execute(), 32
exp(), 60

fastpoisson(), 34
floor(), 60
for-loop, 15
foreach(), 32

gauss(), 34
general functions, 32
getAll(), 22
getApplicationDataDirectory(), 37
getAutoIncludes(), 27
getBreakOnMatlabErrors(), 25, 58
getBuiltInSimulationParameter(), 52

getBuiltInSimulationParameters(), 52
getBuiltInSimulationParameterUnit(), 52
getBuiltInSimulationParameterValue(), 52
getBypass(), 44
getCheckForMatlabErrors(), 25, 58
getComponent(), 17, 41
getComponents(), 41
getComponentsByType(), 41
getComponentType(), 44
getCurrentDirectory(), 38
getCustomSimulationParameter(), 53
getCustomSimulationParameterUnit(), 53
getCustomSimulationParameterValue(), 53
getDefaultSeed(), 34
getDerivedSimulationParameterUnit(), 53
getDerivedSimulationParameterValue(), 53
getGridCoordinates(), 44
getIncludeDetailedInformationInLogFile(), 24
getIncludeErrorsInLogFile(), 24
getIncludePaths(), 26
getIncludeTimeAndDateInLogFile(), 24
getIncludeWarningsInLogFile(), 24
getInPortLinks(), 56
getIterationResultValues(), 44
getLastError(), 59
getLastWarning(), 59
getLinkPorts(), 57
getLogFileCustomSavePath(), 24
getLogFileOverwrite(), 24
getLogFileUseCustomSavePath(), 24
getMatlabTimeoutInSeconds(), 25, 59
getName(), 45, 50
getOutPortLinks(), 56
getParameter(), 45
getParameterDescription(), 45
getParameterNames(), 17, 45
getParameters(), 45
getParameterUnit(), 17, 45
getParameterUnits(), 45
getParameterValue(), 17, 45
getParameterValues(), 46
getParameterVariationScript(), 52
getPHOTOSSExecutableDirectory(), 37
getPHOTOSSOptionDescription(), 37
getPHOTOSSOptionValue(), 37
getPMDPath(), 46
getResult(), 46
getResultNames(), 18, 46
getResults(), 46
getResultUnit(), 18, 46
getResultUnits(), 18, 46
getResultValue(), 18, 46
getResultValues(), 18, 46
getScriptDirectory(), 38
getShowCodeLineNumbers(), 23
getShowPHOTOSSErrorsInPScriptConsole(), 22
getShowPHOTOSSOutputInPScriptConsole(), 22
getShowPHOTOSSWarningsInPScriptConsole(), 22
getShowPrintedOutputInPHOTOSSConsole(), 23
getShowPScriptErrorsInPHOTOSSConsole(), 23
getShowPScriptOutputInPScriptConsole(), 22
getShowPScriptWarningsInPHOTOSSConsole(), 23
getShowTimeAndDateAtPrompt(), 22
getSimulationCustomParameters(), 53
getSimulationParameter(), 51
getSimulationParameterIsVariation(), 52
getSimulationParameters(), 51
getSimulationParameterUnit(), 51
getSimulationParameterValue(), 18, 51
getSimulationParameterValues(), 51
getSimulationParameterVariationVector, 52
getSimulations(), 38

62

getUnit(), 49, 54
getUseCodeAssistant(), 23
getUseHistory(), 25
getUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript(),

25, 59
getUseLogFile(), 24
getUserHomeDirectory(), 16, 38
getUseSyntaxHighlighting(), 23
getUseSyntaxHighlightingInConsole(), 23
getValue(), 29, 49, 54, 59
getVariationVector(), 50

include(), 32
includePathsContain(), 26
info(), 38
investigate(), 41
isAvailable(), 59
isBuiltIn(), 50
isComponentOfType(), 46
isInPortLinked(), 56
isIterator(), 47
isLinked(), 57
isLinkedTo(), 57
isNetwork(), 47
isOpen(), 41
isOutPortLinked(), 57
isVariation(), 50

linkComponents(), 56
listBuiltInSimulationParameters(), 50
listComponents(), 16, 41
listCustomSimulationParameters(), 50
listDerivedSimulationParameters(), 51
listParameters(), 47
listPHOTOSSOptions(), 38
listResults(), 17, 47
listSimulationParameter(), 50
loadVariables(), 38
log(), 60

max(), 60
min(), 60
moveDownAutoInclude(), 27
moveUpAutoInclude(), 27
moveUpIncludePath(), 26

negExp(), 34
newSimulation(), 38

openSimulation(), 16, 38, 40

pareto(), 34
poisson(), 34
pow(), 60
print, 15

Quickstart Guide, 16–18

random generator, 34
readStringArrayFromFile(), 38
removeAutoInclude(), 27
removeIncludePath(), 26
resetEngine(), 32
restoreDefaults(), 22
result class, 54
round(), 60
run(), 17, 41
runAutoIncludes(), 27, 32

save(), 42
saveAs(), 16, 42
saveVariables(), 38
setAll(), 22

setBreakOnMatlabErrors(), 25, 58
setBuiltInSimulationParameterValue(), 53
setBypass(), 47
setCheckForMatlabErrors(), 25, 58
setCurrentDirectory(), 16, 38
setCustomSimulationParameterName(), 53
setCustomSimulationParameterUnit(), 53
setCustomSimulationParameterValue(), 53
setDefaultSeed(), 34
setDeterministic(), 35
setIncludeDetailedInformationInLogFile(), 24
setIncludeErrorsInLogFile(), 24
setIncludeTimeAndDateInLogFile(), 24
setIncludeWarningsInLogFile(), 24
setLogFileCustomSavePath(), 24
setLogFileOverwrite(), 24
setLogFileUseCustomSavePath(), 24
setMatlabTimeoutInSeconds(), 25, 59
setName(), 47, 50
setParameterValue(), 17, 47
setPHOTOSSDefaultOptions(), 39
setPHOTOSSOptionValue(), 39
setPMDPath(), 47
setRandom(), 35
setShowCodeLineNumbers(), 23
setShowPHOTOSSErrorsInPScriptConsole(), 22
setShowPHOTOSSOutputInPScriptConsole(), 22
setShowPHOTOSSWarningsInPScriptConsole(), 22
setShowPrintedOutputInPHOTOSSConsole(), 23
setShowPScriptErrorsInPHOTOSSConsole(), 23
setShowPScriptOutputInPScriptConsole(), 22
setShowPScriptWarningsInPHOTOSSConsole(), 23
setShowTimeAndDateAtPrompt(), 22
setSimulationParameterName(), 51
setSimulationParameterUnit(), 52
setSimulationParameterValue(), 18, 51
setSimulationParameterVariationVector, 52
setUnit(), 50
setUseCodeAssistant(), 23
setUseHistory(), 25
setUseIdenticalMatlabWorkspaceForPHOTOSSAndPScript(),

25, 59
setUseLogFile(), 24
setUseSyntaxHighlighting(), 23
setUseSyntaxHighlightingInConsole(), 23
setValue(), 29, 49, 59
setVariationVector(), 50
simulation class, 40
simulation object, 13
simulation parameter class, 48
simulationObject.close(), 40
sin(), 60
sqrt(), 60

tan(), 60
timestamp(), 39
toMatlab(), 58

uniform(), 35
unlinkComponents(), 57

who(), 33
writeStringArrayToFile(), 39

63

	Copyright Information
	Acknowledgments
	What is PScript?
	Version Changes
	From PHOTOSS 5.0 (Rev. 3624) to 5.10 (Rev. 3929)
	From PHOTOSS 5.10 (Rev. 3929) to 5.10.3 (Rev. 5019257)
	From PHOTOSS 5.10.3 (Rev. 5019257) to 5.90.2 (Rev. fd68ed5)
	From PHOTOSS 5.90.2 (Rev. fd68ed5) to 5.91
	From PHOTOSS 5.91 to 5.92

	Basic Functionality of PScript
	PScript Conventions
	General Conventions
	Conventions concerning PScript Objects

	PScript Demo Walkthrough
	Access to Simulations, Components, Parameters and Results (Quickstart Guide)
	PScript and MATLAB®
	PScript Console Main Window
	PScript Console Menu Functionality
	PScript Settings Dialog
	Console Settings
	Editor Settings
	Log File Settings
	History Settings
	MATLAB® Settings
	Include Settings
	Auto Include Settings

	Using PScript in Command Line Mode / Using PScript with Condor®
	PScript Syntax Highlighting and Code Assistant
	PScript Code Samples
	PScript Function Reference
	PScript Options / Settings
	General Functions
	Generating Random Numbers in PScript
	Functions concerning the application class:
	Functions concerning the simulation class:
	Functions concerning the component class:
	Functions concerning the simulation parameter class:
	Functions concerning the result class:
	Functions concerning the global variables:
	Functions concerning linking and unlinking of components
	PScript MATLAB® specific functions

	Basic JavaScript Mathematical Function Reference
	External References
	Index

